Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 992



Upload your image

DSS Images   Other Images

Related articles

Warm, Dense Molecular Gas in the ISM of Starbursts, LIRGs, and ULIRGs
The role of star formation in luminous and ultraluminous infraredgalaxies (LIRGs, LIR>=1011 LsolarULIRGs, LIR>=1012 Lsolar) is a hotlydebated issue: while it is clear that starbursts play a large role inpowering the IR luminosity in these galaxies, the relative importance ofpossible enshrouded AGNs is unknown. It is therefore important to betterunderstand the role of star-forming gas in contributing to the infraredluminosity in IR-bright galaxies. The J=3 level of 12CO lies33 K above ground and has a critical density of~1.5×104 cm-3. The 12CO J=3-2line serves as an effective tracer for warm, dense molecular gas heatedby active star formation. Here we report on 12CO J=3-2observations of 17 starburst spiral galaxies, LIRGs, and ULIRGs, whichwe obtained with the Heinrich Hertz Submillimeter Telescope on MountGraham, Arizona. Our main results are as follows. (1) We find a nearlylinear relation between the infrared luminosity and warm, densemolecular gas such that the infrared luminosity increases as the warm,dense molecular gas to the power 0.92; we interpret this to be roughlyconsistent with the recent results of Gao & Solomon. (2) We findLIR/MH2warm,dense ratios ranging from~38 to ~482 Lsolar/Msolar using a modifiedCO-H2 conversion factor of 8.3×1019cm-2 (K km s-1)-1 derived in thispaper.

The distribution of atomic gas and dust in nearby galaxies - III. Radial distributions and metallicity gradients
The radial distribution of dust and gas in 38 nearby galaxies isinvestigated, using a sample of galaxies for which matched resolution(25 arcsec) neutral hydrogen (HI) and 850-μm images are available.Most of these radial profiles are fitted well by an exponential model,and the derived 850-μm scalelengths are proportional to the HIscalelengths. From this relation, it is found that the metallicitygradients of these galaxies are much shallower than previous studies,unless the dust temperature is constant within the disc, or asignificant component of molecular gas exists at large radii that is nottraced by CO observations.

Principal component analysis of International Ultraviolet Explorer galaxy spectra
We analyse the UV spectral energy distribution of a sample of normalgalaxies listed in the International Ultraviolet Explorer (IUE) NewlyExtracted Spectra (INES) Guide No. 2 - Normal Galaxies using a principalcomponent analysis. The sample consists of the IUE short-wavelength (SW)spectra of the central regions of 118 galaxies, where the IUE apertureincluded more than 1 per cent of the galaxy size. The principalcomponents are associated with the main components observed in theultraviolet (UV) spectra of galaxies. The first component, accountingfor the largest source of diversity, may be associated with the UVcontinuum emission. The second component represents the UV contributionof an underlying evolved stellar population. The third component issensitive to the amount of activity in the central regions of galaxiesand measures the strength of star-formation events.In all the samples analysed here, the principal component representativeof star-forming activity accounts for a significant percentage of thevariance. The fractional contribution to the spectral energydistribution (SED) by the evolved stars and by the young population aresimilar.Projecting the SEDs on to their eigenspectra, we find that none of thecoefficients of the principal components can outline an internalcorrelation or can correlate with the optical morphological types. In asubsample of 43 galaxies, consisting of almost only compact and BCDgalaxies, the third principal component defines a sequence related tothe degree of starburst activity of the galaxy.

The distribution of atomic gas and dust in nearby galaxies - II. Further matched-resolution Very Large Array H I and SCUBA 850-μm images
We present Very Large Array (VLA) C-array 21-cm HI images of galaxiesfrom the SCUBA Local Universe Galaxy Survey which have been observed at850 μm with the James Clerk Maxwell Telescope. Matched-resolution (~25 arcsec) HI images of 17 galaxies are presented and compared with850-μm images. HI or 850-μm images of an additional six galaxieswhich were detected at only one wavelength are presented. Additionally,lower resolution H I observations of nine galaxies are presented. Theobservations of these galaxies, along with results previously presented,do not show any obvious trends in the HI/dust or H2/dust massratios with morphological type.

Dust masses and star formation in bright IRAS galaxies. Application of a physical model for the interpretation of FIR observations
We address the problem of modeling the far-infrared (FIR) spectrum andderiving the star-formation rate (SFR) and the dust mass of spiralgalaxies. We use the realistic physical model of Popescu et al.(\cite{popescu}) to describe the overall ultra-violet (UV), optical andFIR spectral energy distribution (SED) of a spiral galaxy. The modeltakes into account the 3-dimensional old and young stellar distributionsin the bulge and the disk of a galaxy, together with the dust geometry.The geometrical characteristics of the galaxy and the intrinsic opticaland near-infrared spectra are determined by the galaxy's observed K-bandphotometry. The UV part of the spectrum is assumed to be proportional tothe SFR through the use of population synthesis models. By solving theradiative transfer equation, we are able to determine the absorbedenergy, the dust temperature and the resulting FIR spectrum. The modelhas only three free parameters: SFR, dust mass, and the fraction of theUV radiation which is absorbed locally by dense dust in the HII regions.Using this model, we are able to fit well the FIR spectra of 62 brightIRAS galaxies from the ``SCUBA Local Universe Galaxy Survey" of Dunne etal. (\cite{dunne1}). As a result, we are able to determine, amongothers, their SFR and dust mass. We find that, on average, the SFR (inabsolute units), the star-formation efficiency, the SFR surface densityand the ratio of FIR luminosity over the total intrinsic luminosity, arelarger than the respective values of typical spiral galaxies of the samemorphological type. We also find that the mean gas-to-dust mass ratio isclose to the Galactic value, while the average central face-on opticaldepth of these galaxies in the V band is 2.3. Finally, we find a strongcorrelation between SFR or dust mass and observed FIR quantities liketotal FIR luminosity or FIR luminosity at 100 and 850 μm. Thesecorrelations yield well-defined relations, which can be used todetermine a spiral galaxy's SFR and dust-mass content from FIRobservations.

The PDS versus Markarian starburst galaxies: comparing strong and weak IRAS emitter at 12 and 25 μm in the nearby Universe
The characteristics of the starburst galaxies from the Pico dos Diassurvey (PDS) are compared with those of the nearby ultraviolet (UV)bright Markarian starburst galaxies, having the same limit in redshift(vh < 7500 km s-1) and absolute B magnitude(MB < -18). An important difference is found: theMarkarian galaxies are generally undetected at 12 and 25 μm in IRAS.This is consistent with the UV excess shown by these galaxies andsuggests that the youngest star-forming regions dominating thesegalaxies are relatively free of dust.The far-infrared selection criteria for the PDS are shown to introduce astrong bias towards massive (luminous) and large size late-type spiralgalaxies. This is contrary to the Markarian galaxies, which are found tobe remarkably rich in smaller size early-type galaxies. These resultssuggest that only late-type spirals with a large and massive disc arestrong emitters at 12 and 25 μm in IRAS in the nearby Universe.The Markarian and PDS starburst galaxies are shown to share the sameenvironment. This rules out an explanation of the differences observedin terms of external parameters. These differences may be explained byassuming two different levels of evolution, the Markarian being lessevolved than the PDS galaxies. This interpretation is fully consistentwith the disc formation hypothesis proposed by Coziol et al. to explainthe special properties of the Markarian SBNG.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

The WSRT wide-field H I survey. I. The background galaxy sample
We have used the Westerbork array to carry out an unbiased wide-fieldsurvey for H I emission features, achieving an RMS sensitivity of about18 mJy/Beam at a velocity resolution of 17 km s-1 over 1800deg2 and between -1000 < VHel <+6500 kms-1. The primary data consists of auto-correlation spectrawith an effective angular resolution of 49' FWHM, althoughcross-correlation data were also acquired. The survey region is centeredapproximately on the position of Messier 31 and is Nyquist-sampled over60x 30o in RA x Dec. More than 100 distinct features aredetected at high significance in each of the two velocity regimes(negative and positive LGSR velocities). In this paper we present theresults for our H I detections of external galaxies at positive LGSRvelocity. We detect 155 external galaxies in excess of 8sigma inintegrated H I flux density. Plausible optical associations are foundwithin a 30' search radius for all but one of our H I detections in DSSimages, although several are not previously cataloged or do not havepublished red-shift determinations. Our detection without a DSSassociation is at low galactic latitude. Twenty-three of our objects aredetected in H I for the first time. We classify almost half of ourdetections as ``confused'', since one or more companions is catalogedwithin a radius of 30' and a velocity interval of 400 km s-1.We identify a handful of instances of significant positional offsetsexceeding 10 kpc of unconfused optical galaxies with the associated H Icentroid, possibly indicative of severe tidal distortions or uncatalogedgas-rich companions. A possible trend is found for an excess of detectedH I flux in unconfused galaxies within our large survey beam relative tothat detected previously in smaller telescope beams, both as function ofincreasing distance and increasing gas mass. This may be an indicationfor a diffuse gaseous component on 100 kpc scales in the environment ofmassive galaxies or a population of uncataloged low mass companions. Weuse our galaxy sample to estimate the H I mass function from our surveyvolume. Good agreement is found with the HIPASS BGC results, but onlyafter explicit correction for galaxy density variations with distance.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/406/829 and Fig. 3 is onlyavailable in electronic form at http://www.edpsciences.org

The SCUBA Local Universe Galaxy Survey - I. First measurements of the submillimetre luminosity and dust mass functions
This is the first of a series of papers presenting results from theSCUBA Local Universe Galaxy Survey (SLUGS), the first statistical surveyof the submillimetre properties of the local Universe. As the initialpart of this survey, we have used the SCUBA camera on the James ClerkMaxwell Telescope to observe 104 galaxies from the IRAS Bright GalaxySample. We present here the 850-μm flux measurements. The 60-, 100-,and 850-μm flux densities are well fitted by single-temperature dustspectral energy distributions, with the sample mean and standarddeviation for the best-fitting temperature beingTd=35.6+/-4.9K and for the dust emissivity indexβ=1.3+/-0.2. The dust temperature was found to correlate with60-μm luminosity. The low value of β may simply mean that thesegalaxies contain a significant amount of dust that is colder than thesetemperatures. We have estimated dust masses from the 850-μm fluxesand from the fitted temperature, although if a colder component ataround 20K is present (assuming a β of 2), then the estimated dustmasses are a factor of 1.5-3 too low. We have made the first directmeasurements of the submillimetre luminosity function (LF) and of thedust mass function. Unlike the IRAS 60-μm LF, these are well fittedby Schechter functions. The slope of the 850-μm LF at lowluminosities is steeper than -2, implying that the LF must flatten atluminosities lower than we probe here. We show that extrapolating the60-μm LF to 850μm using a single temperature and β does notreproduce the measured submillimetre LF. A population of `cold' galaxies(Td<25K) emitting strongly at submillimetre wavelengthswould have been excluded from the 60-μm-selected sample. If suchgalaxies do exist, then this estimate of the 850-μm flux is biased(it is underestimated). Whether such a population does exist is unknownat present. We correlate many of the global galaxy properties with theFIR/submillimetre properties. We find that there is a tendency for lessluminous galaxies to contain hotter dust and to have a greater starformation efficiency (cf. Young). The average gas-to-dust ratio for thesample is 581+/-43 (using both the atomic and molecular hydrogen), whichis significantly higher than the Galactic value of 160. We believe thatthis discrepancy is probably due to a `cold dust' component atTd<=20K in our galaxies. There is a surprisingly tightcorrelation between dust mass and the mass of molecular hydrogen,estimated from CO measurements, with an intrinsic scatter of ~=50percent.

The QDOT all-sky IRAS galaxy redshift survey
We describe the construction of the QDOT survey, which is publiclyavailable from an anonymous FTP account. The catalogue consists ofinfrared properties and redshifts of an all-sky sample of 2387 IRASgalaxies brighter than the IRAS PSC 60-μm completeness limit(S_60>0.6Jy), sparsely sampled at a rate of one-in-six. At |b|>10deg, after removing a small number of Galactic sources, the redshiftcompleteness is better than 98per cent (2086/2127). New redshifts for1401 IRAS sources were obtained to complete the catalogue; themeasurement and reduction of these are described, and the new redshiftstabulated here. We also tabulate all sources at |b|>10 deg with noredshift so far, and sources with conflicting alternative redshiftseither from our own work, or from published velocities. A list of 95ultraluminous galaxies (i.e. with L_60μm>10^12 L_solar) is alsoprovided. Of these, ~20per cent are AGN of some kind; the broad-lineobjects typically show strong Feii emission. Since the publication ofthe first QDOT papers, there have been several hundred velocity changes:some velocities are new, some QDOT velocities have been replaced by moreaccurate values, and some errors have been corrected. We also present anew analysis of the accuracy and linearity of IRAS 60-μm fluxes. Wefind that the flux uncertainties are well described by a combination of0.05-Jy fixed size uncertainty and 8per cent fractional uncertainty.This is not enough to cause the large Malmquist-type errors in the rateof evolution postulated by Fisher et al. We do, however, find marginalevidence for non-linearity in the PSC 60-μm flux scale, in the sensethat faint sources may have fluxes overestimated by about 5per centcompared with bright sources. We update some of the previous scientificanalyses to assess the changes. The main new results are as follows. (1)The luminosity function is very well determined overall but is uncertainby a factor of several at the very highest luminosities(L_60μm>5x10^12L_solar), as this is where the remainingunidentified objects are almost certainly concentrated. (2) Thebest-fitting rate of evolution is somewhat lower than our previousestimate; expressed as pure density evolution with density varying as(1+z)^p, we find p=5.6+/-2.3. Making a rough correction for the possible(but very uncertain) non-linearity of fluxes, we find p=4.5+/-2.3. (3)The dipole amplitude decreases a little, and the implied value of thedensity parameter, assuming that IRAS galaxies trace the mass, isΩ=0.9(+0.45, -0.25). (4) Finally, the estimate of density varianceon large scales changes negligibly, still indicating a significantdiscrepancy from the predictions of simple cold dark matter cosmogonies.

Arcsecond Positions of UGC Galaxies
We present accurate B1950 and J2000 positions for all confirmed galaxiesin the Uppsala General Catalog (UGC). The positions were measuredvisually from Digitized Sky Survey images with rms uncertaintiesσ<=[(1.2")2+(θ/100)2]1/2,where θ is the major-axis diameter. We compared each galaxymeasured with the original UGC description to ensure high reliability.The full position list is available in the electronic version only.

The Pico DOS Dias Survey Starburst Galaxies
We discuss the nature of the galaxies found in the Pico dos Dias Survey(PDS) for young stellar objects. The PDS galaxies were selected from theIRAS Point Source catalog. They have flux density of moderate or highquality at 12, 25, and 60 μm and spectral indices in the ranges -3.00<= alpha(25, 12) <= + 0.35 and -2.50 <= alpha(60, 25) <=+0.85. These criteria allowed the detection of 382 galaxies, which are amixture of starburst and Seyfert galaxies. Most of the PDS Seyfertgalaxies are included in the catalog of warm IRAS sources by de Grijp etal. The remaining galaxies constitute a homogeneous sample of luminous[log F (L_B/L_ȯ) = 9.9 +/- 0.4] starburst galaxies, 67% of whichwere not recognized as such before. The starburst nature of the PDSgalaxies is established by comparing their L_IR/L_B ratios and IRAScolors with a sample of emission-line galaxies from the literaturealready classified as starburst galaxies. The starburst galaxies show anexcess of FIR luminosity, and their IRAS colors are significantlydifferent from those of Seyfert galaxies-99% of the starburst galaxiesin our sample have a spectral index alpha(60, 25) < -1.9. As opposedto Seyfert galaxies, very few PDS starbursts are detected in X-rays. Inthe infrared, the starburst galaxies form a continuous sequence withnormal galaxies. But they generally can be distinguished from normalgalaxies by their spectral index alpha(60, 25) > -2.5. This colorcutoff also marks a change in the dominant morphologies of the galaxies:the normal IRAS galaxies are preferentially late-type spirals (Sb andlater), while the starbursts are more numerous among early-type spirals(earlier than Sbc). This preference of starbursts for early-type spiralsis not new, but a trait of the massive starburst nucleus galaxies(Coziol et al.). As in other starburst nucleus galaxy samples, the PDSstarbursts show no preference for barred galaxies. No difference isfound between the starbursts detected in the FIR and those detected onthe basis of UV excess. The PDS starburst galaxies represent the FIRluminous branch of the UV-bright starburst nucleus galaxies, with meanFIR luminosity log (L_IR/L_ȯ) = 10.3 +/- 0.5 and redshifts smallerthan 0.1. They form a complete sample limited in flux in the FIR at 2 x10^-10 ergs cm^-2 s^-1.

Groups of galaxies. III. Some empirical characteristics.
Not Available

Catalogue of HI maps of galaxies. I.
A catalogue is presented of galaxies having large-scale observations inthe HI line. This catalogue collects from the literature the informationthat characterizes the observations in the 21-cm line and the way thatthese data were presented by means of maps, graphics and tables, forshowing the distribution and kinematics of the gas. It containsfurthermore a measure of the HI extension that is detected at the levelof the maximum sensitivity reached in the observations. This catalogueis intended as a guide for references on the HI maps published in theliterature from 1953 to 1995 and is the basis for the analysis of thedata presented in Paper II. The catalogue is only available inelectronic form at the CDS via anonymous ftp orhttp://cdsweb.u-strasbg.fr/Abstract.html

Total magnitude, radius, colour indices, colour gradients and photometric type of galaxies
We present a catalogue of aperture photometry of galaxies, in UBVRI,assembled from three different origins: (i) an update of the catalogueof Buta et al. (1995) (ii) published photometric profiles and (iii)aperture photometry performed on CCD images. We explored different setsof growth curves to fit these data: (i) The Sersic law, (ii) The net ofgrowth curves used for the preparation of the RC3 and (iii) A linearinterpolation between the de Vaucouleurs (r(1/4) ) and exponential laws.Finally we adopted the latter solution. Fitting these growth curves, wederive (1) the total magnitude, (2) the effective radius, (3) the colourindices and (4) gradients and (5) the photometric type of 5169 galaxies.The photometric type is defined to statistically match the revisedmorphologic type and parametrizes the shape of the growth curve. It iscoded from -9, for very concentrated galaxies, to +10, for diffusegalaxies. Based in part on observations collected at the Haute-ProvenceObservatory.

Dust and CO emission in normal spirals. I. The data.
We present 1300μm continuum observations and measurements of the CO(1-0) and (2-1) emission from the inner regions of 98 normal galaxies.The spatial resolution ranges from 11" to 45". The sources come from acomplete FIR selected sample of 138 inactive spirals with an opticaldiameter D_25_<=180".

An image database. II. Catalogue between δ=-30deg and δ=70deg.
A preliminary list of 68.040 galaxies was built from extraction of35.841 digitized images of the Palomar Sky Survey (Paper I). For eachgalaxy, the basic parameters are obtained: coordinates, diameter, axisratio, total magnitude, position angle. On this preliminary list, weapply severe selection rules to get a catalog of 28.000 galaxies, wellidentified and well documented. For each parameter, a comparison is madewith standard measurements. The accuracy of the raw photometricparameters is quite good despite of the simplicity of the method.Without any local correction, the standard error on the total magnitudeis about 0.5 magnitude up to a total magnitude of B_T_=17. Significantsecondary effects are detected concerning the magnitudes: distance toplate center effect and air-mass effect.

A CO survey of galaxies with the SEST and the 20-m Onsala telescope.
A large survey of galaxies in the J=1-0 CO line, performed during1985-1988 using the 15-m SEST and the 20-m millimetre wave telescope ofOnsala Space Observatory, is presented. The HPBW of the telescopes are44" and 33" at 115GHz, respectively. The central positions of 168galaxies were observed and 101 of these were detected in the CO line.More than 20% of these are new detections. Maps of some of the galaxiesare also presented.

Multiwavelength Energy Distributions and Bolometric Luminosities of the 12 Micron Galaxy Sample
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJ...453..616S&db_key=AST

The Nuclear Energy Sources Powering Bright Infrared-selected Galaxies
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJ...447..545A&db_key=AST

Radio Identifications of Extragalactic IRAS Sources
Extragalactic sources detected at λ= 60 microns were selectedfrom the IRAS Faint Source Catalog, Version 2 by the criterion S_60microns_ >= S_12_ microns. They were identified by positioncoincidence with radio sources stronger than 25 mJy at 4.85 GHz in the6.0 sr declination band 0^deg^ < δ < +75^deg^ (excluding the0.05 sr region 12^h^40^m^< α < 14^h^40^m^, 0^deg^<+5^deg^) and with radio sources stronger than 80 mJy in the 3.4 sr areao^h^ <α < 2o^h^, -40^deg^ < δ < 0^deg^ (plus theregion 12^h^40^m^ < α < 14^h^40^m^, 0^deg^<δ<+5^deg^). Fields containing new candidate identifications weremapped by the VLA at 4.86 GHz with about 15" FWHM resolution. Difficultcases were confirmed or rejected with the aid of accurate (σ ~ 1")radio and optical positions. The final sample of 354 identifications in{OMEGA} = 9.4 sr is reliable and large enough to contain statisticallyuseful numbers of radio-loud FIR galaxies and quasars. The logarithmicFIR radio flux ratio parameter q can be used to distinguish radiosources powered by "starbursts" from those powered by "monsters."Starbursts and normal spiral galaxies in a λ = 60 micronflux-limited sample have a narrow (σ_q_ = 0.14 +/- 0.01) qdistribution with mean = 2.74 +/- 0.01, and none have "warm"FIR spectra [α(25 microns, 60 microns) < 1.5]. The absence ofradio- quiet (but not completely silent) blazars indicates that nearlyall blazars become optically thin at frequencies v<~100 GHz.Nonthermal sources with steep FIR/optical spectra and dusty-embeddedsources visible only at FIR and radio wavelengths must be very rare.

X-ray study of starburst galaxies.
We present full results of a wide-energy, population study of X-rayemission from a sample of 51 candidate starburst galaxies selected fromthe IRAS Bright Galaxy Sample. Superposed low and high energy X-rayemission from these galaxies in the Einstein IPC and HEAO-1 A2 and A4energy bands, which span 0.5 to 160keV, is detected at the 99.99%confidence level, after allowing for confusion noise in the HEAO-1 data.Above 13keV the confidence level is only 85%. A power-law fit to themean spectral luminosity yields a (photon) index of 1.47+/-0.26. Weconsider and assess likely environments and mechanisms for X-rayemission in starburst galaxies. These include thermal emission frommassive binaries, supernova remnants, and galactic halos, and nonthermalemission resulting from Compton scattering of relativistic electrons bythe far IR and the cosmic microwave background radiation fields. Thecontribution of the population of sources represented by this sample tothe 3-50keV residual cosmic X-ray background is estimated to be at the3-4% level assuming no evolution. This contribution is significantlyhigher if the population evolved moderately.

CO versus HI in the Tully-Fisher relation for a sample of 32 galaxies
As a basic step for establishing the CO-line Tully-Fisher relation fordistant galaxies, we made a comparative study of HI versus CO lineprofiles. Total line profiles of the CO line emission from 32 galaxieshave been compared with the corresponding HI emission. We found a goodcorrelation between the profiles of CO and HI. This strongly supportsthe thesis that CO can be used in the Tully-Fisher relation for distantgalaxies where HI observations cannot reach. We also argue that CO canbe used as an alternative to HI for non-isolated galaxies such as thosein dense cluster of galaxies. Using the B-magnitudes and a recentcalibration of the HI Tully-Fisher relation we give the distances forthe galaxies derived from the CO-line Tully-Fisher relation and comparethem with the corresponding HI distances.

An evidence for enhanced star formation rate in IRAS-detected Arakelian galaxies.
Not Available

The extended 12 micron galaxy sample
We have selected an all-sky (absolute value of b greater than or equalto 25 deg) 12 micron flux-limited sample of 893 galaxies from the IRASFaint Source Catalog, Version 2 (FSC-2). We have obtained accurate totalfluxes in the IRAS wavebands by using the ADDSCAN procedure for allobjects with FSC-2 12 micron fluxes greater than 0.15 Jy and increasingflux densities from 12 to 60 microns, and defined the sample by imposinga survey limit of 0.22 Jy on the total 12 micron flux. Its completenessis verified, by means of the classical log N - log S andV/Vmax tests, down to 0.30 Jy, below which we have measuredthe incompleteness down to the survey limit, using the log N - log Splot, for our statistical analysis. We have obtained redshifts (mostlyfrom catalogs) for virtually all (98.4%) the galaxies in the sample.Using existing catalogs of active galaxies, we defined a subsample of118 objects consisting of 53 Seyfert 1s and quasars, 63 Seyfert 2s, andtwo blazars (approximately 13% of the full sample), which is the largestunbiased sample of Seyfert galaxies ever assembled. Since the 12 micronflux has been shown to be about one-fifth of the bolometric flux forSeyfert galaxies and quasars, the subsample of Seyferts (includingquasars and blazars) is complete not only to 0.30 Jy at 12 microns butalso with respect to a bolometric flux limit of approximately 2.0 x10-10 ergs/s/sq cm. The average value of V/Vmaxfor the full sample, corrected for incompleteness at low fluxes, is 0.51+/- 0.04, expected for a complete sample of uniformly distributedgalaxies, while the value for the Seyfert galaxy subsample is 0.46 +/-0.10. We have derived 12 microns and far-infrared luminosity functionsfor the AGNs, as well as for the entire sample. We extracted from oursample a complete subsample of 235 galaxies flux-limited (8.3 Jy) at 60microns. The 60 micron luminosity function computed for this subsampleis in satisfactory agreement with the ones derived from the brightgalaxy sample (BGS) and the deep high-galactic latitude sample, bothselected at 60 microns.

A revised catalog of CfA1 galaxy groups in the Virgo/Great Attractor flow field
A new identification of groups and clusters in the CfA1 Catalog ofHuchra et al. is presented, using a percolation algorithm to identifydensity enhancements. It is shown that in the resulting catalog,contamination by interlopers is significantly reduced. The Schechterluminosity function is redetermined, including the Malmquist bias.

Infrared polarimetry of galaxies. III - Global comparisons
Many infrared-luminous and/or starburst galaxies show simpleinterstellar polarization in the infrared, but the magnitude of thepolarization is significantly lower than expected for the observednear-infrared color excess. Possible expansions, including a scrambledmagnetic field, dilution from hot dust emission, and a 'crossedpolaroid' geometry are discussed. Only the model with a polar nuclearfield at right angles to a planar disk field, causing a 'crossedpolaroid' effect, is consistent with other observations of thesegalaxies. This suggests that most infrared-luminous and starburstgalaxies have massive polar outflows from their nuclei.

A survey of the Pisces-Perseus supercluster. VI - The declination zone +15.5 deg to 21.5 deg
New results are presented of Arecibo observations in the 21 cm line of765 galaxies with declinations between 15.5 deg and 21.5 deg, in thePisces-Perseus supercluster zone. If considered independently on theneighboring parts of sky, this region, to the South of the superclusterridge, shows significantly less evidence of structure on large scales inexcess of 30 Mpc, contrasting substantially with the characteristics ofthe declination zones immediately to the North.

Infrared polarimetry and the Galactic magnetic field. II - Improved models
Two models of the Galactic magnetic field are developed in order toaccount for the observed trend in interstellar polarization withextinction at 2l2 microns. It is shown that the trend can be wellaccounted for by assuming that there is no dependence of thepolarization on field strength and that the large elongated dust grainsare everywhere 100 percent aligned. A model for the magnetic field usingAlfven waves works best when there is equipartition between the magneticand turbulent energy densities. A model invoking vector addition of aconstant component and a random component works best when there is equalenergy density in the two components. Both models do well in matchingthe observed dispersion in polarization magnitude and the observeddispersion in position angle. The path length over which the magneticfield decorrelates must be tied to the total path, not the physical pathlength. Two simple cloud compression scenarios may explain this finding.

The far-infrared properties of the CfA galaxy sample. I - The catalog
IRAS flux densities are presented for all galaxies in the Center forAstrophysics magnitude-limited sample (mB not greater than 14.5)detected in the IRAS Faint Source Survey (FSS), a total of 1544galaxies. The detection rate in the FSS is slightly larger than in thePSC for the long-wavelength 60- and 100-micron bands, but improves by afactor of about 3 or more for the short wavelength 12- and 25-micronbands. This optically selected sample consists of galaxies which are, onaverage, much less IR-active than galaxies in IR-selected samples. Itpossesses accurate and complete redshift, morphological, and magnitudeinformation, along with observations at other wavelengths.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:02h37m25.50s
Aparent dimensions:0.813′ × 0.603′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 992

→ Request more catalogs and designations from VizieR