Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 4550


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Stellar kinematics and populations of early-type galaxies with the SAURON and OASIS integral-field spectrographs
We summarise the results and achievements of integral-field spectroscopyof early-type galaxies, observed as part of a survey using both theSAURON and OASIS spectrographs. From the perspective of integral-fieldspectroscopy, these otherwise smooth and featureless objects show awealth of structure, both in their stellar kinematics and populations.We focus on the stellar content, and examine properties on bothkiloparsec scales with SAURON, and scales of 100’s of parsecs withOASIS. These complementary studies reveal two types of kinematicallydistinct components (KDCs), differing primarily in their intrinsicsizes. In previous studies, KDCs and their host galaxies have generallybeen found to be unremarkable in other aspects. We show that large KDCs,typical of the well-studied cases, indeed show little or no agedifferences with their host galaxy. The KDCs detected with the higherspatial-resolution of OASIS are intrinsically smaller and include, incontrast, a significant fraction of young stars. We speculate on therelationship between KDCs and their host galaxies, and the implicationsfor young populations in early-type galaxies.

Surface density profiles of collisionless disc merger remnants
We present a detailed surface density analysis of a large sample ofsimulated collisionless mergers of disc galaxies with bulges (massratios 1:1, 2:1, 3:1, 4:1 and 6:1) and without bulges (mass ratios 1:1and 3:1). A dissipative component was not included. The randomlyprojected remnants were fit with a single Sérsic function and aSérsic function plus an exponential. They were classified,according to their bulge-to-total (B/T) ratio, either as a one-componentsystem or as a two-component system. In general, projection effectschange the classification of a remnant. Only merger remnants of discswith bulges show properties similar to observed early-type galaxies.Their B/T ratios are in the range 0.2 < B/T < 1. Surprisingly, theinitial mass ratio has a weak influence on the distributions of B/T,effective radius and Sérsic index n. For all one-componentprojections (~60 per cent of all projections), the Sérsic indexdistribution peaks at 3 < n < 4. However, the mass ratio istightly linked to the properties of the outer exponential componentswhich resemble pressure-supported, spheroidal haloes for 1:1 and 2:1remnants and elongated heated discs for 6:1 remnants. We found distinctcorrelations between the fitting parameters which are very similar toobserved relations (e.g. larger bulges have lower effective surfacedensities). No indications for a correlation between the surface densityprofiles and other global parameters like remnant masses, isophotalshapes or central velocity dispersions are found. The remnants haveproperties similar to giant elliptical galaxies in the intermediate-massregime. A binary disc merger origin for all early-type galaxies,especially the most massive ones, is unlikely. Observed nearby mergerremnants have properties similar to the simulated remnants. They canhave formed from binary disc mergers and might evolve into early-typegalaxies within a few Gyr.

The SAURON project - VI. Line strength maps of 48 elliptical and lenticular galaxies
We present absorption line strength maps of 48 representative ellipticaland lenticular galaxies obtained as part of a survey of nearby galaxiesusing our custom-built integral-field spectrograph, SAURON, operating onthe William Herschel Telescope. Using high-quality spectra, spatiallybinned to a constant signal-to-noise ratio, we measure four key age,metallicity and abundance ratio sensitive indices from the Lick/IDSsystem over a two-dimensional field extending up to approximately oneeffective radius. A discussion of calibrations and offsets is given,along with a description of error estimation and nebular emissioncorrection. We modify the classical Fe5270 index to define a new index,Fe5270S, which maximizes the useable spatial coverage ofSAURON. Maps of Hβ, Fe5015, Mgb and Fe5270S arepresented for each galaxy. We use the maps to compute average linestrengths integrated over circular apertures of one-eighth effectiveradius, and compare the resulting relations of index versus velocitydispersion with previous long-slit work. The metal line strength mapsshow generally negative gradients with increasing radius roughlyconsistent with the morphology of the light profiles. Remarkabledeviations from this general trend exist, particularly the Mgb isoindexcontours appear to be flatter than the isophotes of the surfacebrightness for about 40 per cent of our galaxies without significantdust features. Generally, these galaxies exhibit significant rotation.We infer from this that the fast-rotating component features a highermetallicity and/or an increased Mg/Fe ratio as compared to the galaxy asa whole. The Hβ maps are typically flat or show a mild positiveoutwards radial gradient, while a few galaxies show strong central peaksand/or elevated overall Hβ strength likely connected to recent starformation activity. For the most prominent post-starburst galaxies, eventhe metal line strength maps show a reversed gradient.

The SAURON project - V. Integral-field emission-line kinematics of 48 elliptical and lenticular galaxies
We present the emission-line fluxes and kinematics of 48 representativeelliptical and lenticular galaxies obtained with our custom-builtintegral-field spectrograph, SAURON, operating on the William HerschelTelescope. Hβ, [OIII]λλ4959,5007 and[NI]λλ5198,5200 emission lines were measured using a newprocedure that simultaneously fits both the stellar spectrum and theemission lines. Using this technique we can detect emission lines downto an equivalent width of 0.1 Å set by the current limitations indescribing galaxy spectra with synthetic and real stellar templates,rather than by the quality of our spectra. Gas velocities and velocitydispersions are typically accurate to within 14 and 20 kms-1, respectively, and at worse to within 25 and 40 kms-1. The errors on the flux of the [OIII] and Hβ linesare on average 10 and 20 per cent, respectively, and never exceed 30 percent. Emission is clearly detected in 75 per cent of our samplegalaxies, and comes in a variety of resolved spatial distributions andkinematic behaviours. A mild dependence on the Hubble type and galacticenvironment is observed, with higher detection rates in lenticulargalaxies and field objects. More significant is the fact that only 55per cent of the galaxies in the Virgo cluster exhibit clearly detectedemission. The ionized-gas kinematics is rarely consistent with simplecoplanar circular motions. However, the gas almost never displayscompletely irregular kinematics, generally showing coherent motions withsmooth variations in angular momentum. In the majority of the cases, thegas kinematics is decoupled from the stellar kinematics, and in half ofthe objects this decoupling implies a recent acquisition of gaseousmaterial. Over the entire sample however, the distribution of the meanmisalignment values between stellar and gaseous angular momenta isinconsistent with a purely external origin. The distribution ofkinematic misalignment values is found to be strongly dependent on theapparent flattening and the level of rotational support of galaxies,with flatter, fast rotating objects hosting preferentially corotatinggaseous and stellar systems. In a third of the cases, the distributionand kinematics of the gas underscore the presence of non-axisymmetricperturbations of the gravitational potential. Consistent with previousstudies, the presence of dust features is always accompanied by gasemission while the converse is not always true. A considerable range ofvalues for the [OIII]/Hβ ratio is found both across the sample andwithin single galaxies. Despite the limitations of this ratio as anemission-line diagnostic, this finding suggests either that a variety ofmechanisms is responsible for the gas excitation in E and S0 galaxies orthat the metallicity of the interstellar material is quiteheterogeneous.

The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies
We investigate the well-known correlations between the dynamicalmass-to-light ratio (M/L) and other global observables of elliptical (E)and lenticular (S0) galaxies. We construct two-integral Jeans andthree-integral Schwarzschild dynamical models for a sample of 25 E/S0galaxies with SAURON integral-field stellar kinematics to about oneeffective (half-light) radius Re. They have well-calibratedI-band Hubble Space Telescope WFPC2 and large-field ground-basedphotometry, accurate surface brightness fluctuation distances, and theirobserved kinematics is consistent with an axisymmetric intrinsic shape.All these factors result in an unprecedented accuracy in the M/Lmeasurements. We find a tight correlation of the form (M/L) = (3.80 +/-0.14) ×(σe/200kms-1)0.84+/-0.07 betweenthe M/L (in the I band) measured from the dynamical models and theluminosity-weighted second moment σe of the LOSVDwithin Re. The observed rms scatter in M/L for our sample is18 per cent, while the inferred intrinsic scatter is ~13 per cent. The(M/L)-σe relation can be included in the remarkableseries of tight correlations between σe and othergalaxy global observables. The comparison of the observed correlationswith the predictions of the Fundamental Plane (FP), and with simplevirial estimates, shows that the `tilt' of the FP of early-typegalaxies, describing the deviation of the FP from the virial relation,is almost exclusively due to a real M/L variation, while structural andorbital non-homology have a negligible effect. When the photometricparameters are determined in the `classic' way, using growth curves, andthe σe is measured in a large aperture, the virial massappears to be a reliable estimator of the mass in the central regions ofgalaxies, and can be safely used where more `expensive' models are notfeasible (e.g. in high-redshift studies). In this case the best-fittingvirial relation has the form (M/L)vir= (5.0 +/- 0.1)×Reσ2e/(LG), in reasonableagreement with simple theoretical predictions. We find no differencebetween the M/L of the galaxies in clusters and in the field. Thecomparison of the dynamical M/L with the (M/L)pop inferredfrom the analysis of the stellar population, indicates a median darkmatter fraction in early-type galaxies of ~30 per cent of the total massinside one Re, in broad agreement with previous studies, andit also shows that the stellar initial mass function varies little amongdifferent galaxies. Our results suggest a variation in M/L at constant(M/L)pop, which seems to be linked to the galaxy dynamics. Wespeculate that fast-rotating galaxies have lower dark matter fractionsthan the slow-rotating and generally more-massive ones. If correct, thiswould suggest a connection between the galaxy assembly history and thedark matter halo structure. The tightness of our correlation providessome evidence against cuspy nuclear dark matter profiles in galaxies.

The ACS Virgo Cluster Survey. VIII. The Nuclei of Early-Type Galaxies
The ACS Virgo Cluster Survey is a Hubble Space Telescope program toobtain high-resolution imaging in widely separated bandpasses (F475W~gand F850LP~z) for 100 early-type members of the Virgo Cluster, spanninga range of ~460 in blue luminosity. We use this large, homogenous dataset to examine the innermost structure of these galaxies and tocharacterize the properties of their compact central nuclei. We presenta sharp upward revision in the frequency of nucleation in early-typegalaxies brighter than MB~-15 (66%<~fn<~82%)and show that ground-based surveys underestimated the number of nucleidue to surface brightness selection effects, limited sensitivity andpoor spatial resolution. We speculate that previously reported claimsthat nucleated dwarfs are more concentrated toward the center of Virgothan their nonnucleated counterparts may be an artifact of theseselection effects. There is no clear evidence from the properties of thenuclei, or from the overall incidence of nucleation, for a change atMB~-17.6, the traditional dividing point between dwarf andgiant galaxies. There does, however, appear to be a fundamentaltransition at MB~-20.5, in the sense that the brighter,``core-Sérsic'' galaxies lack resolved (stellar) nuclei. A searchfor nuclei that may be offset from the photocenters of their hostgalaxies reveals only five candidates with displacements of more than0.5", all of which are in dwarf galaxies. In each case, however, theevidence suggests that these ``nuclei'' are, in fact, globular clustersprojected close to the galaxy photocenter. Working from a sample of 51galaxies with prominent nuclei, we find a median half-light radius of=4.2 pc, with the sizes of individual nucleiranging from 62 pc down to <=2 pc (i.e., unresolved in our images) inabout a half-dozen cases. Excluding these unresolved objects, the nucleisizes are found to depend on nuclear luminosity according to therelation rh L0.50+/-0.03. Because the largemajority of nuclei are resolved, we can rule out low-level AGNs as anexplanation for the central luminosity excess in almost all cases. Onaverage, the nuclei are ~3.5 mag brighter than a typical globularcluster. Based on their broadband colors, the nuclei appear to have oldto intermediate age stellar populations. The colors of the nuclei ingalaxies fainter than MB~-17.6 are tightly correlated withtheir luminosities, and less so with the luminosities of their hostgalaxies, suggesting that their chemical enrichment histories weregoverned by local or internal factors. Comparing the nuclei to the``nuclear clusters'' found in late-type spiral galaxies reveals a closematch in terms of size, luminosity, and overall frequency. A formationmechanism that is rather insensitive to the detailed properties of thehost galaxy properties is required to explain this ubiquity andhomogeneity. The mean of the frequency function for thenucleus-to-galaxy luminosity ratio in our nucleated galaxies,=-2.49+/-0.09 dex (σ=0.59+/-0.10), isindistinguishable from that of the SBH-to-bulge mass ratio,=-2.61+/-0.07dex (σ=0.45+/-0.09), calculated in 23 early-type galaxies withdetected supermassive black holes (SBHs). We argue that the compactstellar nuclei found in many of our program galaxies are the low-masscounterparts of the SBHs detected in the bright galaxies. If thisinterpretation is correct, then one should think in terms of ``centralmassive objects''-either SBHs or compact stellar nuclei-that accompanythe formation of almost all early-type galaxies and contain a meanfraction ~0.3% of the total bulge mass. In this view, SBHs would be thedominant formation mode above MB~-20.5.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS5-26555.

Stellar Populations in Nearby Lenticular Galaxies
We have obtained two-dimensional spectral data for a sample of 58 nearbyS0 galaxies with the Multi-Pupil Fiber/Field Spectrograph of the 6 mtelescope of the Special Astrophysical Observatory of the RussianAcademy of Sciences. The Lick indices Hβ, Mg b, and arecalculated separately for the nuclei and for the bulges taken as therings between R=4'' and 7", and the luminosity-weighted ages,metallicities, and Mg/Fe ratios of the stellar populations are estimatedby comparing the data to single stellar population (SSP) models. Fourtypes of galaxy environments are considered: clusters, centers ofgroups, other places in groups, and the field. The nuclei are found tobe on average slightly younger than the bulges in any type ofenvironment, and the bulges of S0 galaxies in sparse environments areyounger than those in dense environments. The effect can be partlyattributed to the well-known age correlation with the stellar velocitydispersion in early-type galaxies (in our sample the galaxies in sparseenvironments are on average less massive than those in denseenvironments), but for the most massive S0 galaxies, withσ*=170-220 km s-1, the age dependence on theenvironment is still significant at the confidence level of 1.5 σ.Based on observations collected with the 6 m telescope (BTA) at theSpecial Astrophysical Observatory (SAO) of the Russian Academy ofSciences (RAS).

Spitzer IRS spectra of Virgo Early-Type Galaxies: Detection of Stellar Silicate Emission
We present high signal-to-noise ratio Spitzer Infrared Spectrographobservations of 17 Virgo early-type galaxies. The galaxies were selectedfrom those that define the color-magnitude relation of the cluster, withthe aim of detecting the silicate emission of their dusty, mass-losingevolved stars. To flux calibrate these extended sources, we have deviseda new procedure that allows us to obtain the intrinsic spectral energydistribution and to disentangle resolved and unresolved emission withinthe same object. We have found that 13 objects of the sample (76%) arepassively evolving galaxies with a pronounced broad silicate featurethat is spatially extended and likely of stellar origin, in agreementwith model predictions. The other four objects (24%) are characterizedby different levels of activity. In NGC 4486 (M87), the line emissionand the broad silicate emission are evidently unresolved, and, givenalso the typical shape of the continuum, they likely originate in thenuclear torus. NGC 4636 shows emission lines superposed on extended(i.e., stellar) silicate emission, thus pushing the percentage ofgalaxies with silicate emission to 82%. Finally, NGC 4550 and NGC 4435are characterized by polycyclic aromatic hydrocarbon (PAH) and lineemission, arising from a central unresolved region. A more detailedanalysis of our sample, with updated models, will be presented in aforthcoming paper.

The ACS Virgo Cluster Survey. IX. The Color Distributions of Globular Cluster Systems in Early-Type Galaxies
We present the color distributions of globular cluster (GC) systems for100 early-type galaxies observed in the ACS Virgo Cluster Survey, thedeepest and most homogeneous survey of this kind to date. On average,galaxies at all luminosities in our study (-22

The X-ray emission properties and the dichotomy in the central stellar cusp shapes of early-type galaxies
The Hubble Space Telescope has revealed a dichotomy in the centralsurface brightness profiles of early-type galaxies, which havesubsequently been grouped into two families: core, boxy, anisotropicsystems; and cuspy (`power-law'), discy, rotating ones. Here weinvestigate whether a dichotomy is also present in the X-ray propertiesof the two families. We consider both their total soft emission(LSX,tot), which is a measure of the galactic hot gascontent, and their nuclear hard emission (LHX,nuc), mostlycoming from Chandra observations, which is a measure of the nuclearactivity. At any optical luminosity, the highest LSX,totvalues are reached by core galaxies; this is explained by their beingthe central dominant galaxies of groups, subclusters or clusters, inmany of the logLSX,tot (ergs-1) >~ 41.5 cases.The highest LHX,nuc values, similar to those of classicalactive galactic nuclei (AGNs), in this sample are hosted only by core orintermediate galaxies; at low luminosity AGN levels, LHX,nucis independent of the central stellar profile shape. The presence ofoptical nuclei (also found by HST) is unrelated to the level ofLHX,nuc, even though the highest LHX,nuc are allassociated with optical nuclei. The implications of these findings forgalaxy evolution and accretion modalities at the present epoch arediscussed.

Group, field and isolated early-type galaxies - II. Global trends from nuclear data
We have derived ages, metallicities and enhanced-element ratios[α/Fe] for a sample of 83 early-type galaxies essentially ingroups, the field or isolated objects. The stellar-population propertiesderived for each galaxy correspond to the nuclear re/8aperture extraction. The median age found for Es is 5.8+/-0.6 Gyr andthe average metallicity is +0.37+/-0.03 dex. For S0s, the median age is3.0+/-0.6 Gyr and [Z/H]= 0.53+/-0.04 dex. We compare the distribution ofour galaxies in the Hβ-[MgFe] diagram with Fornax galaxies. Ourelliptical galaxies are 3-4 Gyr younger than Es in the Fornax cluster.We find that the galaxies lie in a plane defined by [Z/H]= 0.99logσ0- 0.46 log(age) - 1.60, or in linear terms Z~σ0× (age) -0.5. More massive (largerσ0) and older galaxies present, on average, large[α/Fe] values, and therefore must have undergone shorterstar-formation time-scales. Comparing group against field/isolatedgalaxies, it is not clear that environment plays an important role indetermining their stellar-population history. In particular, ourisolated galaxies show ages differing by more than 8 Gyr. Finally weexplore our large spectral coverage to derive log(O/H) metallicity fromthe Hα and NIIλ6584 and compare it with model-dependent[Z/H]. We find that the O/H abundances are similar for all galaxies, andwe can interpret it as if most chemical evolution has already finishedin these galaxies.

Group, field and isolated early-type galaxies - I. Observations and nuclear data
This is the first paper of a series on the investigation of stellarpopulation properties and galaxy evolution of an observationallyhomogeneous sample of early-type galaxies in groups, field and isolatedgalaxies.Here we present high signal-to-noise ratio (S/N) long-slit spectroscopyof 86 nearby elliptical and S0 galaxies. Eight of them are isolated,selected according to a rigorous criterion, which guarantees a genuinelow-density subsample. The present survey has the advantage of coveringa larger wavelength range than normally found in the literature, whichincludes [OIII]λ5007 and Hα, both lines important foremission correction. Among the 86 galaxies with S/N >= 15 (perresolution element, for re/8 central aperture), 57 have theirHβ-index corrected for emission (the average correction is 0.190Åin Hβ) and 42 galaxies reveal [OIII]λ5007 emission,of which 16 also show obvious Hα emission. Most of the galaxies inthe sample do not show obvious signs of disturbances nor tidal featuresin the morphologies, although 11 belong to the Arp catalogue of peculiargalaxies; only three of them (NGC 750, 751 and 3226) seem to be stronglyinteracting. We present the measurement of 25 central line-strengthindices calibrated to the Lick/IDS system. Kinematic information isobtained for the sample. We analyse the line-strength index versusvelocity dispersion relations for our sample of mainly low-densityenvironment galaxies, and compare the slope of the relations withcluster galaxies from the literature. Our main findings are that theindex-σ0 relations presented for low-density regionsare not significantly different from those of cluster E/S0s. The slopeof the index-σ0 relations does not seem to change forearly-type galaxies of different environmental densities, but thescatter of the relations seems larger for group, field and isolatedgalaxies than for cluster galaxies.

The ACS Virgo Cluster Survey. X. Half-Light Radii of Globular Clusters in Early-Type Galaxies: Environmental Dependencies and a Standard Ruler for Distance Estimation
We have measured half-light radii, rh, for thousands ofglobular clusters (GCs) belonging to the 100 early-type galaxiesobserved in the ACS Virgo Cluster Survey and the elliptical galaxy NGC4697. An analysis of the dependencies of the measured half-light radiion both the properties of the GCs themselves and their host galaxiesreveals that, in analogy with GCs in the Galaxy but in a milder fashion,the average half-light radius increases with increasing galactocentricdistance or, alternatively, with decreasing galaxy surface brightness.For the first time, we find that the average half-light radius decreaseswith the host galaxy color. We also show that there is no evidence for avariation of rh with the luminosity of the GCs. Finally, wefind in agreement with previous observations that the averagerh depends on the color of GCs, with red GCs being ~17%smaller than their blue counterparts. We show that this difference isprobably a consequence of an intrinsic mechanism, rather than projectioneffects, and that it is in good agreement with the mechanism proposed byJordán. We discuss these findings in light of two simple picturesfor the origin of the rh of GCs and show that both lead to abehavior in rough agreement with the observations. After accounting forthe dependencies on galaxy color, galactocentric radius, and underlyingsurface brightness, we show that the average GC half-light radii can be successfully used as a standard ruler fordistance estimation. We outline the methodology, provide a calibrationfor its use, and discuss the prospects for this distance estimator withfuture observing facilities. We find =2.7+/-0.35 pcfor GCs with (g-z)=1.2 mag in a galaxy with color(g-z)gal=1.5 mag and at an underlying surface z-bandbrightness of μz=21 mag arcsec-2. Using thistechnique, we place an upper limit of 3.4 Mpc on the 1 σline-of-sight depth of the Virgo Cluster. Finally, we examine the formof the rh distribution for our sample galaxies and provide ananalytic expression that successfully describes this distribution.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555.

The Link between Star Formation and Accretion in LINERs: A Comparison with Other Active Galactic Nucleus Subclasses
We present archival high-resolution X-ray imaging observations of 25nearby LINERs observed by ACIS on board Chandra. This sample builds onour previously published proprietary and archival X-ray observations andincludes the complete set of LINERs with published black hole masses andFIR luminosities that have been observed by Chandra. Of the 82 LINERsobserved by Chandra, 41 (50%) display hard nuclear cores consistent withan AGN. The nuclear 2-10 keV luminosities of these AGN-LINERs range from~2×1038 to ~1×1044 ergss-1. Reinforcing our previous work, we find a significantcorrelation between the Eddington ratio,Lbol/LEdd, and the FIR luminosity,LFIR, as well as the IR brightness ratio,LFIR/LB, in the host galaxy of AGN-LINERs thatextends over 7 orders of magnitude in Lbol/LEdd.Combining our AGN-LINER sample with galaxies from other AGN subclasses,we find that this correlation is reinforced in a sample of 129 AGNs,extending over almost 9 orders of magnitude inLbol/LEdd. Using archival and previously publishedobservations of the 6.2 μm PAH feature from ISO, we find that it isunlikely that dust heating by the AGN dominates the FIR luminosity inour sample of AGNs. Our results may therefore imply a fundamental linkbetween the mass accretion rate (M˙), as measured by the Eddingtonratio, and the star formation rate (SFR), as measured by the FIRluminosity. Apart from the overall correlation, we find that thedifferent AGN subclasses occupy distinct regions in the LFIRand Lbol/LEdd plane. Assuming a constant radiativeefficiency for accretion, our results may imply a variation in theSFR/M˙ ratio as a function of AGN activity level, a result that mayhave significant consequences for our understanding of galaxy formationand black hole growth.

The Hubble Space Telescope View of LINER Nuclei: Evidence for a Dual Population?
We study a complete, distance-limited sample of 25 LINERs, 21 of whichhave been imaged with the Hubble Space Telescope. In nine objects wedetect an unresolved nucleus. To study their physical properties, wecompare the radio and optical properties of the nuclei of LINERs withthose of other samples of local active galactic nuclei (AGNs), namely,Seyfert galaxies and low-luminosity radio galaxies (LLRGs). Our resultsshow that the LINER population is not homogeneous, as there are twosubclasses: (1) the first class is similar to the LLRG class, as itextends the population of radio-loud nuclei to lower luminosities; (2)the second is similar to Seyfert galaxies and extends the properties ofradio-quiet nuclei toward the lowest luminosities. The objects areoptimally discriminated in the plane formed by the black hole massversus nuclear radio loudness: all radio-loud LINERs haveMBH>~108Msolar, while Seyfertgalaxies and radio-quiet LINERs haveMBH<~108Msolar. The different natureof the various classes of local AGNs are best understood when thefraction of the Eddington luminosity they irradiate,Lo/LEdd, is plotted against the nuclearradio-loudness parameter: Seyfert galaxies are associated withrelatively high radiative efficienciesLo/LEdd>~10-4 (and high accretionrates onto low-mass black holes); LLRGs are associated with lowradiative efficiencies (and low accretion rates onto high-mass blackholes); all LINERs have low radiative efficiency (and accretion rates)and can be radio-loud or radio-quiet, depending on their black holemass.Based on observations obtained at the Space Telescope Science Institute,which is operated by the Association of Universities for Research inAstronomy, Inc., under NASA contract NAS5-26555.

Infrared mergers and infrared quasi-stellar objects with galactic winds - II. NGC5514: two extranuclear starbursts with LINER properties and a supergiant bubble in the rupture phase
A study of the morphology, kinematics and ionization structure of theinfrared (IR) merger NGC5514 is presented. This study is based mainly onINTEGRAL two-dimensional (2D) spectroscopy (obtained at the 4.2-mWilliam Herschel Telescope, WHT), plus optical and near-IR images. Clearevidence of two extranuclear starbursts with young outflows (OFs) andlow-ionization nuclear emission region (LINER) activity are reported.One of these OFs has generated a supergiant bubble and the other isassociated with an extended complex of HII regions.In the galactic bubble it was found that: (i) the [SII], Hα,[NII], [OI] and [OIII] emission-line maps show a bubble with a distortedellipsoidal shape, with major and minor axes of ~6.5 kpc [13.6 arcsec;at position angle (PA) = 120°+/- 10°] and ~4.5 kpc (9.6 arcsec);(ii) these maps depict four main knots, a very strong one and threeothers more compact and located at the border; (iii) the centre of thebubble is located at ~4.1 kpc (8.5 arcsec) to the west of the mainnucleus; (iv) the WHT spectra show, in this area, two strong components:blue and red emission-line systems, probably associated with emissionfrom the near and far side of the external shell, for which the mean OFvelocities were measured as VOFblue= (-320 +/- 20)kms-1 and VOFred= (+265 +/- 25) kms-1(v) these two components depict LINER properties, probably associatedwith large-scale OF + shocks; (vi) at the east border, the kinematics ofthe ionized gas and the [SII] emission-line maps show an extendedejection of 4 kpc aligned with the PA of the major axis; (vii) threeother ejections were found, two of them perpendicular to the extendedone. Each ejection starts in one of the knots. These results suggestthat the bubble is in the rupture phase.For the complex of giant HII regions it was found that: (i) theHα, [NII] and [SII] emission-line maps show a compact strongemission area (peaking at ~810 pc ~1.7 arcsec, to the east of the secondnucleus) and faint extended emission with an elongated shape, and majorand minor axes of ~5.1 kpc (10.8 arcsec; at PA ~20°) and ~2.9 kpc(6.0 arcsec); (ii) inside this complex, the spectra show HII region andtransition LINER/HII characteristics; (iii) at the border of thisextended HII area the spectra have outflow components and LINERproperties.INTEGRAL 2D [NII], Hα, [SII] and [OIII] velocity fields (VFs) arepresented. These VF maps show results consistent with an expansion ofthe bubble, plus four ejections of ionized gas. The U, B, V, I, J, H andKS images show a pre-merger morphology, from which faintfilaments of emission emerge, centred on the bubble. The ionizationstructure and the physical conditions were analysed using the following2D emission-line ratio and width maps: [SII]/Hα, [NII]/Hα,[OI]/Hα, [OIII]/Hβ and FWHM-[NII]. In the region of thebubble, 100 per cent of the [NII]/Hα and [SII]/Hα ratiosshow very high values (>0.8) consistent with LINER processesassociated with high-velocity shocks. These new results support theprevious proposition that extreme nuclear and `extranuclear' starburstswith galactic winds + shocks play an important role in the evolution ofIR mergers/quasi-stellar objects.

The SAURON project - III. Integral-field absorption-line kinematics of 48 elliptical and lenticular galaxies
We present the stellar kinematics of 48 representative elliptical andlenticular galaxies obtained with our custom-built integral-fieldspectrograph SAURON operating on the William Herschel Telescope. Thedata were homogeneously processed through a dedicated reduction andanalysis pipeline. All resulting SAURON data cubes were spatially binnedto a constant minimum signal-to-noise ratio. We have measured thestellar kinematics with an optimized (penalized pixel-fitting) routinewhich fits the spectra in pixel space, via the use of optimal templates,and prevents the presence of emission lines to affect the measurements.We have thus generated maps of the mean stellar velocity V, the velocitydispersion σ, and the Gauss-Hermite moments h3 andh4 of the line-of-sight velocity distributions. The mapsextend to approximately one effective radius. Many objects displaykinematic twists, kinematically decoupled components, central stellardiscs, and other peculiarities, the nature of which will be discussed infuture papers of this series.

The relationship between the Sérsic law profiles measured along the major and minor axes of elliptical galaxies
In this paper we discuss the reason why the parameters of theSérsic model best-fitting the major axis light profile ofelliptical galaxies can differ significantly from those derived for theminor axis profile. We show that this discrepancy is a naturalconsequence of the fact that the isophote eccentricity varies with theradius of the isophote and present a mathematical transformation thatallows the minor axis Sérsic model to be calculated from themajor axis model, provided that the elliptical isophotes are aligned andconcentric and that their eccentricity can be represented by a wellbehaved, though quite general, function of the radius. When there is novariation in eccentricity only the effective radius changes in theSérsic model, while for radial-dependent eccentricity thetransformation, which allows the minor axis Sérsic model to becalculated from the major axis model is given by the Lerch Φtranscendental function. The proposed transformation was tested usingphotometric data for 28 early-type galaxies.

The ACS Virgo Cluster Survey. II. Data Reduction Procedures
The ACS Virgo Cluster Survey is a large program to carry out multicolorimaging of 100 early-type members of the Virgo Cluster using theAdvanced Camera for Surveys (ACS) on the Hubble Space Telescope. DeepF475W and F850LP images (~SDSS g and z) are being used to study thecentral regions of the program galaxies, their globular cluster systems,and the three-dimensional structure of Virgo itself. In this paper, wedescribe in detail the data reduction procedures used for the survey,including image registration, drizzling strategies, the computation ofweight images, object detection, the identification of globular clustercandidates, and the measurement of their photometric and structuralparameters.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555.

The ACS Virgo Cluster Survey. I. Introduction to the Survey
The Virgo Cluster is the dominant mass concentration in the LocalSupercluster and the largest collection of elliptical and lenticulargalaxies in the nearby universe. In this paper, we present anintroduction to the ACS Virgo Cluster Survey: a program to image, in theF475W and F850LP bandpasses (~Sloan g and z), 100 early-type galaxies inthe Virgo Cluster using the Advanced Camera for Surveys on the HubbleSpace Telescope. We describe the selection of the program galaxies andtheir ensemble properties, the choice of filters, the field placementand orientation, the limiting magnitudes of the survey, coordinatedparallel observations of 100 ``intergalactic'' fields with WFPC2, andsupporting ground-based spectroscopic observations of the programgalaxies. In terms of depth, spatial resolution, sample size, andhomogeneity, this represents the most comprehensive imaging survey todate of early-type galaxies in a cluster environment. We brieflydescribe the main scientific goals of the survey, which include themeasurement of luminosities, metallicities, ages, and structuralparameters for the many thousands of globular clusters associated withthese galaxies, a high-resolution isophotal analysis of galaxiesspanning a factor of ~450 in luminosity and sharing a commonenvironment, the measurement of accurate distances for the full sampleof galaxies using the method of surface brightness fluctuations, and adetermination of the three-dimensional structure of Virgo itself.ID="FN1"> 1Based on observations with the NASA/ESA Hubble SpaceTelescope obtained at the Space Telescope Science Institute, which isoperated by the association of Universities for Research in Astronomy,Inc., under NASA contract NAS 5-26555.

Hα Morphologies and Environmental Effects in Virgo Cluster Spiral Galaxies
We describe the various Hα morphologies of Virgo Cluster andisolated spiral galaxies and associate the Hα morphologies withthe types of environmental interactions that have altered the clustergalaxies. The spatial distributions of Hα and R-band emission areused to divide the star formation morphologies of the 52 Virgo Clusterspiral galaxies into several categories: normal (37%), anemic (6%),enhanced (6%), and (spatially) truncated (52%). Truncated galaxies arefurther subdivided on the basis of their inner star formation rates intotruncated/normal (37%), truncated/compact (6%), truncated/anemic (8%),and truncated/enhanced (2%). The fraction of anemic galaxies isrelatively small (6%-13%) in both environments, suggesting thatstarvation is not a major factor in the reduced star formation rates ofVirgo spiral galaxies. The majority of Virgo spiral galaxies have theirHα disks truncated (52%), whereas truncated Hα disks arerarer in isolated galaxies (12%). Most of the Hα-truncatedgalaxies have relatively undisturbed stellar disks and normal toslightly enhanced inner disk star formation rates, suggesting thatintracluster medium-interstellar medium (ICM-ISM) stripping is the mainmechanism causing the reduced star formation rates of Virgo spiralgalaxies. Several of the truncated galaxies are peculiar, with enhancedcentral star formation rates, disturbed stellar disks, and barlikedistributions of luminous H II complexes inside the central 1 kpc but nostar formation beyond, suggesting that recent tidal interactions orminor mergers have also influenced their morphology. Two highly inclinedHα-truncated spiral galaxies have numerous extraplanar H IIregions and are likely in an active phase of ICM-ISM stripping. Severalspiral galaxies have one-sided Hα enhancements at the outer edgeof their truncated Hα disks, suggesting modest local enhancementsin their star formation rates due to ICM-ISM interactions. Low-velocitytidal interactions and perhaps outer cluster H I accretion seem to bethe triggers for enhanced global star formation in four Virgo galaxies.These results indicate that most Virgo spiral galaxies experienceICM-ISM stripping, many experience significant tidal effects, and manyexperience both.

The origin of H I-deficiency in galaxies on the outskirts of the Virgo cluster. II. Companions and uncertainties in distances and deficiencies
The origin of the deficiency in neutral hydrogen of 13 spiral galaxieslying in the outskirts of the Virgo cluster is reassessed. If thesegalaxies have passed through the core of the cluster, their interstellargas should have been lost through ram pressure stripping by the hotX-ray emitting gas of the cluster. We analyze the positions of these HI-deficient and other spiral galaxies in velocity-distance plots, inwhich we include our compilation of velocity-distance data on 61elliptical galaxies, and compare with simulated velocity-distancediagrams obtained from cosmological N-body simulations. We find that˜20% relative Tully-Fisher distance errors are consistent with thegreat majority of the spirals, except for a small number of objectswhose positions in the velocity-distance diagram suggest grosslyincorrect distances, implying that the Tully-Fisher error distributionfunction has non-Gaussian wings. Moreover, we find that the distanceerrors may lead to an incorrect fitting of the Tolman-Bondi solutionthat can generate significant errors in the distance and especially themass estimates of the cluster. We suggest 4 possibilities for theoutlying H I-deficient spirals (in decreasing frequency): 1) they havelarge relative distance errors and are in fact close enough (atdistances between 12.7 and 20.9 Mpc from us) to the cluster to havepassed through its core and seen their gas removed by ram pressurestripping; 2) their gas is converted to stars by tidal interactions withother galaxies; 3) their gas is heated during recent mergers withsmaller galaxies; and 4) they are not truly H I-deficient (e.g. S0/amisclassified as Sa).Appendix A is only available in electronic form athttp://www.edpsciences.org

Spectrophotometry of galaxies in the Virgo cluster. II. The data
Drift-scan mode (3600-6800 Å) spectra with 500

The infrared-X-ray continuum correlation in active galactic nuclei
The correlation between the soft X-ray and near-infrared emission fromactive galactic nuclei (AGNs) is analysed using composite models. Wefind new evidence for differences in the ranges of parameters thatcharacterize the narrow-line region (NLR) of Seyfert galaxies andlow-ionization nuclear emission regions (LINERs). Soft X-rays show lessvariability, so they are better fitted for this kind of analysis. In ourmodels, soft X-rays are emitted in the post-shock region of clouds withrelatively high shock velocities Vs > 250 kms-1. Consequently, dust emission peaks in the mid-infrared.On the other hand, in the photoionized zone, dust is at lowertemperature and usually does not contribute to the mid-infraredemission. The results are sensible enough to allow the same modellingmethod to be applied to different types of AGN. We found that shockvelocities are between 300 and 1000 km s-1, with the NLR oflow-luminosity active galactic nuclei (LLAGNs) and type 2 Seyfertgalaxies (Sy2s) showing lower velocities than type 1 Seyfert galaxies(Sy1s). The intensity of the ionizing radiation flux at the Lyman limitfrom the central source is low for LINERs and low-luminosity AGNs (logFh= 9 to 10), increasing towards Sy2s (log Fh~ 11)and Sy1s (11 <=Fh<= 12). Results obtained by modellingthe Einstein and the ROSAT samples of galaxies are in full agreement.Dust-to-gas ratios by number are >=10-14 in LINERs andLLAGNs, between 10-15 and 3 × 10-13 in Sy1sand up to 5 × 10-13 in Sy2s. In order to fit theinfrared and X-ray continua, an η factor is defined, which accountsfor the emitting area of the cloud. If the infrared emission is due tobremsstrahlung and comes from the same cloud that produces the softX-rays, the η values obtained from both emissions must be the same.Therefore, if (η)IR < (η)softX, theremust be a strong contribution of soft X-rays from the active centre.From the η values, we expect to identify the objects that couldpresent strong variability.

Measuring shapes of galaxy images - I. Ellipticity and orientation
We suggest a set of morphological measures that we believe can help inquantifying the shapes of two-dimensional cosmological images such asgalaxies, clusters and superclusters of galaxies. The method employsnon-parametric morphological descriptors known as the Minkowskifunctionals in combination with geometric moments widely used in theimage analysis. For the purpose of visualization of the morphologicalproperties of image contour lines, we introduce three auxiliary ellipsesrepresenting the vector and tensor Minkowski functionals. We study thediscreteness, seeing and noise effects on elliptic contours as well astheir morphological characteristics such as the ellipticity andorientation. In order to reduce the effect of noise, we employ atechnique of contour smoothing. We test the method by studying simulatedelliptic profiles of toy spheroidal galaxies ranging in ellipticity fromE0 to E7. We then apply the method to real galaxies, including eightspheroidals, three disc spirals and one peculiar galaxy, as imaged inthe near-infrared Ks-band (2.2 μm) with the Two Micron AllSky Survey. The method is numerically very efficient and can be used inthe study of hundreds of thousands of images obtained in modern surveys.

Statistical Properties of Collisionless Equal- and Unequal-Mass Merger Remnants of Disk Galaxies
We perform a large parameter survey of collisionless N-body simulationsof binary mergers of disk galaxies with mass ratios of 1:1, 2:1, 3:1,and 4:1, using the special-purpose hardware GRAPE. A set of 112 mergersimulations is used to investigate the fundamental statisticalproperties of merger remnants as a function of the initial orientationand mass ratio of the progenitor disks. The photometric and kinematicalproperties of the simulated merger remnants are analyzed. The methodsused to determine the characteristic properties are equivalent to themethods used for observations of giant elliptical galaxies. We takeprojection effects into account and analyze the remnant properties in astatistical way for comparison with observations. The basic propertiesof the remnants correlate with the mass ratio of the progenitor disks.We find that about 80% of the equal-mass merger simulations lead toslowly rotating merger remnants having (v/σ)*<0.4.Observers would interpret those objects as being supported byanisotropic velocity dispersions. All 1:1 remnants show significantminor-axis rotation. Half of all projected 1:1 remnants show boxy(a4<0) isophotes, and the other half show disky(a4>0) isophotes. A distinct subclass of 4 out of 12initial orientations leads to purely boxy remnants independent oforientation. The 1:1 mergers with other initial orientations show diskyor boxy isophotes, depending on the viewing angle. Remnants with massratios of 3:1 and 4:1 have more homogeneous properties. They all rotaterapidly (maximum value of v/σ=1.2) and show a small amount ofminor-axis rotation, consistent with models of isotropic or slightlyanisotropic oblate rotators. If observed in projection, they would beinterpreted as being supported by rotation. About 90% of the projected3:1 and 4:1 remnants show disky isophotes. The 2:1 remnants showintermediate properties. Projection effects lead to a large spread inthe data, in good agreement with observations. They do not change thefundamental kinematical differences between equal- and unequal-massmerger remnants. The correlation between isophotal twist and apparentellipticity of every single merger remnant is in good agreement withobservations. The amount of twisting strongly depends on the orientationof the remnant but is only weakly dependent on the mass ratio of themerger. The results of this study weaken the disk merger scenario as thepossible formation mechanism of massive boxy giant ellipticals, as onlyequal-mass mergers with special initial orientations can produce purelyboxy anisotropic merger remnants. Some orientations of 1:1 mergers caneven lead to disky and anisotropic remnants that are either not observedor would be classified as S0 galaxies based on their morphology. Ingeneral, the properties of equal-mass (and 2:1) merger remnants areconsistent with those of the observed population of giant ellipticals inthe intermediate-mass regime between low-mass, fast-rotating, disky andbright, massive, boxy giant ellipticals. The 3:1 and 4:1 mergerremnants, however, are in very good agreement with the class oflow-luminosity, fast-rotating giant elliptical galaxies. Binary mergersof disk galaxies are therefore still very good candidates for being themain formation mechanism for intermediate- and low-mass giantellipticals. The homogeneous class of massive boxy ellipticals mostlikely formed by a different process.

The Leo I Cloud: Secular Nuclear Evolution of NGC 3379, NGC 3384, and NGC 3368?
The central regions of the three brightest members of the Leo I galaxygroup-NGC 3368, NGC 3379, and NGC 3384-are investigated by means oftwo-dimensional spectroscopy. In all three galaxies we have foundseparate circumnuclear stellar and gaseous subsystems-more probably,disks-whose spatial orientations and spins are connected to the spatialorientation of the supergiant intergalactic H I ring reported previouslyby Schneider et al. and Schneider. In NGC 3368 the global gaseous diskseems also to be inclined to the symmetry plane of the stellar body,being probably of external origin. Although the rather young meanstellar age and spatial orientations of the circumnuclear disks in NGC3379, NGC 3384, and NGC 3368 could imply their recent formation frommaterial of the intergalactic H I cloud, the timescale of thesesecondary formation events, on the order of 3 Gyr, does not support thecollision scenario of Rood & Williams but is rather in line with theideas of Schneider regarding tidal interactions of the galaxies with theH I cloud on timescales of the intergroup orbital motions.

Chandra Snapshot Observations of Low-Luminosity Active Galactic Nuclei with a Compact Radio Source
The results of Chandra snapshot observations of 11 low-ionizationnuclear emission-line regions (LINERs), three low-luminosity Seyfertgalaxies, and one H II-LINER transition object are presented. Our sampleconsists of all the objects with a flat- or inverted-spectrum, compactradio core in the Very Large Array survey of 48 low-luminosity AGNs(LLAGNs) by Nagar and coworkers in 2000. An X-ray nucleus is detected inall galaxies except one, and their X-ray luminosities are in the range5×1038-8×1041 ergs s-1. TheX-ray spectra are generally steeper than expected from thermalbremsstrahlung emission from an advection-dominated accretion flow. TheX-ray-to-Hα luminosity ratios for 11 of 14 objects are in goodagreement, with the value characteristic of LLAGNs and more luminousAGNs, and indicate that their optical emission lines are predominantlypowered by an LLAGN. For three objects, this ratio is less thanexpected. Comparing with properties in other wavelengths, we find thatthese three galaxies are most likely to be heavily obscured AGNs. We usethe ratio RX=νLν(5 GHz)/LX, whereLX is the luminosity in the 2-10 keV band, as a measure ofradio loudness. In contrast to the usual definition of radio loudness[Ro=Lν(5 GHz)/Lν(B)],RX can be used for heavily obscured(NH>~1023 cm-2, AV>50mag) nuclei. Further, with the high spatial resolution of Chandra, thenuclear X-ray emission of LLAGNs is often easier to measure than thenuclear optical emission. We investigate the values of RX forLLAGNs, luminous Seyfert galaxies, quasars, and radio galaxies andconfirm the suggestion that a large fraction of LLAGNs are radio-loud.

Metallicity distributions of globular cluster systems in galaxies
We collected a sample of 100 galaxies for which different observers havedetermined colour indices of globular cluster candidates. The sampleincludes representatives of galaxies of various morphological types anddifferent luminosities. Colour indices (in most cases (V-I), but also(B-I) and (C-T_1)) were transformed into metallicities [Fe/H] accordingto a relation by Kissler-Patig (1998). These data were analysed with theKMM software in order to estimate similarity of the distribution withuni- or bimodal Gaussian distribution. We found that 45 of 100 systemshave bimodal metallicity distributions. Mean metallicity of themetal-poor component for these galaxies is < [Fe/H]> = -1.40 +/-0.02, of the metal-rich component < [Fe/H]> = -0.69 +/- 0.03.Dispersions of the distributions are 0.15 and 0.18, respectively.Distribution of unimodal metallicities is rather wide. These data willbe analysed in a subsequent paper in order to find correlations withparameters of galaxies and galactic environment.

Redshift-Distance Survey of Early-Type Galaxies: Spectroscopic Data
We present central velocity dispersions and Mg2 line indicesfor an all-sky sample of ~1178 elliptical and S0 galaxies, of which 984had no previous measures. This sample contains the largest set ofhomogeneous spectroscopic data for a uniform sample of ellipticalgalaxies in the nearby universe. These galaxies were observed as part ofthe ENEAR project, designed to study the peculiar motions and internalproperties of the local early-type galaxies. Using 523 repeatedobservations of 317 galaxies obtained during different runs, the dataare brought to a common zero point. These multiple observations, takenduring the many runs and different instrumental setups employed for thisproject, are used to derive statistical corrections to the data and arefound to be relatively small, typically <~5% of the velocitydispersion and 0.01 mag in the Mg2 line strength. Typicalerrors are about 8% in velocity dispersion and 0.01 mag inMg2, in good agreement with values published elsewhere.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:おとめ座
Right ascension:12h35m30.70s
Declination:+12°13'13.0"
Aparent dimensions:3.162′ × 0.741′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 4550
HYPERLEDA-IPGC 41943
J/AJ/90/1681VCC 1619

→ Request more catalogs and designations from VizieR