Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 428



Upload your image

DSS Images   Other Images

Related articles

Hubble Space Telescope STIS Spectra of Nuclear Star Clusters in Spiral Galaxies: Dependence of Age and Mass on Hubble Type
We study the nuclear star clusters (NCs) in spiral galaxies of variousHubble types using spectra obtained with the STIS on board the HubbleSpace Telescope (HST). We observed the nuclear clusters in 40 galaxies,selected from two previous HST WFPC2 imaging surveys. At a spatialresolution of ~0.2" the spectra provide a better separation of clusterlight from underlying galaxy light than is possible with ground-basedspectra. Approximately half of the spectra have a sufficiently highsignal-to-noise ratio for detailed stellar population analysis. For theother half we only measure the continuum slope, as quantified by the B-Vcolor. To infer the star formation history, metallicity, and dustextinction, we fit weighted superpositions of single-age stellarpopulation templates to the high signal-to-noise ratio spectra. We usethe results to determine the luminosity-weighted age, mass-to-lightratio, and masses of the clusters. Approximately half of the sampleclusters contain a population younger than 1 Gyr. Theluminosity-weighted ages range from 10 Myr to 10 Gyr. The stellarpopulations of NCs are generally best fit as a mixture of populations ofdifferent ages. This indicates that NCs did not form in a single event,but that instead they had additional star formation long after theoldest stars formed. On average, the sample clusters in late-typespirals have a younger luminosity-weighted mean age than those inearly-type spirals (L=8.37+/-0.25 vs.9.23+/-0.21). The average mass-weighted ages are older by ~0.7 dex,indicating that there often is an underlying older population that doesnot contribute much light but does contain most of the mass. The averagecluster masses are smaller in late-type spirals than in early-typespirals (logM=6.25+/-0.21 vs. 7.63+/-0.24) and exceed the masses typicalof globular clusters. The cluster mass correlates loosely with totalgalaxy luminosity. It correlates more strongly with both the Hubble typeof the host galaxy and the luminosity of its bulge. The lattercorrelation has the same slope as the well-known correlation betweensupermassive black hole mass and bulge luminosity. The properties ofboth nuclear clusters and black holes in the centers of spiral galaxiesare therefore intimately connected to the properties of the host galaxy,and in particular its bulge component. Plausible formation scenarioshave to account for this. We discuss various possible selection biasesin our results, but conclude that none of them can explain thedifferences seen between clusters in early- and late-type spirals. Theinability to infer spectroscopically the populations of faint clustersdoes introduce a bias toward younger ages, but not necessarily towardhigher masses.Based on observations made with the NASA/ESA Hubble Space Telescope,obtained from the Data Archive at the Space Telescope Science Institute,which is operated by the Association of Universities for Research inAstronomy, Inc., under NASA contract NAS5-26555. These observations areassociated with proposals 9070 and 9783.

The structure of galactic disks. Studying late-type spiral galaxies using SDSS
Using imaging data from the SDSS survey, we present the g' and r' radialstellar light distribution of a complete sample of ~90 face-on tointermediate inclined, nearby, late-type (Sb-Sdm) spiral galaxies. Thesurface brightness profiles are reliable (1 σ uncertainty lessthan 0.2 mag) down to μ˜27 mag/''. Only ~10% of all galaxies havea normal/standard purely exponential disk down to our noise limit. Thesurface brightness distribution of the rest of the galaxies is betterdescribed as a broken exponential. About 60% of the galaxies have abreak in the exponential profile between ˜ 1.5-4.5 times thescalelength followed by a downbending, steeper outer region. Another~30% shows also a clear break between ˜ 4.0-6.0 times thescalelength but followed by an upbending, shallower outer region. A fewgalaxies have even a more complex surface brightness distribution. Theshape of the profiles correlates with Hubble type. Downbending breaksare more frequent in later Hubble types while the fraction of upbendingbreaks rises towards earlier types. No clear relation is found betweenthe environment, as characterised by the number of neighbours, and theshape of the profiles of the galaxies.

A radio census of nuclear activity in nearby galaxies
In order to determine the incidence of black hole accretion-drivennuclear activity in nearby galaxies, as manifested by their radioemission, we have carried out a high-resolution Multi-ElementRadio-Linked Interferometer Network (MERLIN) survey of LINERs andcomposite LINER/Hii galaxies from a complete magnitude-limited sample ofbright nearby galaxies (Palomar sample) with unknown arcsecond-scaleradio properties. There are fifteen radio detections, of which three arenew subarcsecond-scale radio core detections, all being candidate AGN.The detected galaxies supplement the already known low-luminosity AGN -low-luminosity Seyferts, LINERs and composite LINER/Hii galaxies - inthe Palomar sample. Combining all radio-detected Seyferts, LINERs andcomposite LINER/Hii galaxies (LTS sources), we obtain an overall radiodetection rate of 54% (22% of all bright nearby galaxies) and weestimate that at least ~50% (~20% of all bright nearby galaxies) aretrue AGN. The radio powers of the LTS galaxies allow the construction ofa local radio luminosity function. By comparing the luminosity functionwith those of selected moderate-redshift AGN, selected from the 2dF/NVSSsurvey, we find that LTS sources naturally extend the RLF of powerfulAGN down to powers of about 10 times that of Sgr A*.

Dynamical mass estimates for two luminous star clusters in galactic merger remnants
We present high-dispersion spectra of two extremely massive starclusters in galactic merger remnants, obtained using the UVESspectrograph mounted on the ESO Very Large Telescope. One cluster, W30,is located in the ~500 Myr old merger remnant NGC 7252 and has avelocity dispersion and effective radius of σ=27.5±2.5 kms-1 and Reff=9.3±1.7 pc, respectively. Theother cluster, G114, located in the ~3 Gyr old merger remnant NGC 1316,is much more compact, Reff=4.08±0.55 pc, and has avelocity dispersion of σ=42.1±2.8 km s-1. Thesemeasurements allow an estimate of the virial mass of the two clusters,yielding Mdyn(W30)=1.59(±0.26)× 10^7Mȯ and Mdyn(G114)=1.64(±0.13)×10^7 Mȯ. Both clusters are extremely massive, being morethan three times heavier than the most massive globular clusters in theGalaxy. For both clusters we measure light-to-mass ratios, which whencompared to simple stellar population (SSP) models of the appropriateage, are consistent with a Kroupa-type stellar mass function. Usingmeasurements from the literature we find a strong age dependence on howwell SSP models (with underlying Kroupa or Salpeter-type stellar massfunctions) fit the light-to-mass ratio of clusters. Based on this resultwe suggest that the large scatter in the light-to-mass ratio of theyoungest clusters is not due to variations in the underlying stellarmass function, but instead to the rapidly changing internal dynamics ofyoung clusters. Based on sampling statistics we argue that while W30 andG114 are extremely massive, they are consistent with being the mostmassive clusters formed in a continuous power-law cluster massdistribution. Finally, based on the positions of old globular clusters,young massive clusters (YMCs), ultra-compact dwarf galaxies (UCDs) anddwarf-globular transition objects (DGTOs) in κ-space we concludethat 1) UCDs and DGTOs are consistent with the high mass end of starclusters and 2) YMCs occupy a much larger parameter space than oldglobular clusters, consistent with the idea of preferential disruptionof star clusters.

GHASP: an Hα kinematic survey of spiral and irregular galaxies - IV. 44 new velocity fields. Extension, shape and asymmetry of Hα rotation curves
We present Fabry-Perot observations obtained in the frame of the GHASPsurvey (Gassendi HAlpha survey of SPirals). We have derived the Hαmap, the velocity field and the rotation curve for a new set of 44galaxies. The data presented in this paper are combined with the datapublished in the three previous papers providing a total number of 85 ofthe 96 galaxies observed up to now. This sample of kinematical data hasbeen divided into two groups: isolated (ISO) and softly interacting(SOFT) galaxies. In this paper, the extension of the Hα discs, theshape of the rotation curves, the kinematical asymmetry and theTully-Fisher relation have been investigated for both ISO and SOFTgalaxies. The Hα extension is roughly proportional toR25 for ISO as well as for SOFT galaxies. The smallestextensions of the ionized disc are found for ISO galaxies. The innerslope of the rotation curves is found to be correlated with the centralconcentration of light more clearly than with the type or thekinematical asymmetry, for ISO as well as for SOFT galaxies. The outerslope of the rotation curves increases with the type and with thekinematical asymmetry for ISO galaxies but shows no special trend forSOFT galaxies. No decreasing rotation curve is found for SOFT galaxies.The asymmetry of the rotation curves is correlated with themorphological type, the luminosity, the (B-V) colour and the maximalrotational velocity of galaxies. Our results show that the brightest,the most massive and the reddest galaxies, which are fast rotators, arethe least asymmetric, meaning that they are the most efficient withwhich to average the mass distribution on the whole disc. Asymmetry inthe rotation curves seems to be linked with local star formation,betraying disturbances of the gravitational potential. The Tully-Fisherrelation has a smaller slope for ISO than for SOFT galaxies.

Masses of Star Clusters in the Nuclei of Bulgeless Spiral Galaxies
In the last decade star clusters have been found in the centers ofspiral galaxies across all Hubble types. We here present a spectroscopicstudy of the exceptionally bright (106-108Lsolar) but compact (re~5 pc) nuclear starclusters in very late type spirals with the Ultraviolet and VisualEchelle Spectrograph at the VLT. We find that the velocity dispersionsof the nine clusters in our sample range from 13 to 34 kms-1. Using photometric data from the Hubble Space TelescopeWFPC2 and spherically symmetric dynamical models, we determine massesbetween 8×105 and 6×107Msolar. The mass-to-light ratios range from 0.2 to 1.5 in theI band. This indicates a young mean age for most clusters, in agreementwith previous studies. Given their high masses and small sizes, we findthat nuclear clusters are among the objects with the highest meansurface density known (up to 105 Msolarpc-2). From their dynamical properties we infer that, ratherthan small bulges, the closest structural kin of nuclear clusters appearto be massive compact star clusters. This includes such differentobjects as globular clusters, ``super star clusters,'' ultracompactdwarf galaxies (UCDs), and the nuclei of dwarf elliptical galaxies. Itis a challenge to explain why, despite the widely different currentenvironments, all different types of massive star clusters share verysimilar and structural properties. A possible explanation links UCDs andmassive globular clusters to nuclear star clusters through stripping ofnucleated dwarf galaxies in a merger event. The extreme properties ofthis type of cluster would then be a consequence of the clusters'location in the centers of their respective host galaxies.

The Distribution of Bar and Spiral Arm Strengths in Disk Galaxies
The distribution of bar strengths in disk galaxies is a fundamentalproperty of the galaxy population that has only begun to be explored. Wehave applied the bar-spiral separation method of Buta and coworkers toderive the distribution of maximum relative gravitational bar torques,Qb, for 147 spiral galaxies in the statistically well-definedOhio State University Bright Galaxy Survey (OSUBGS) sample. Our goal isto examine the properties of bars as independently as possible of theirassociated spirals. We find that the distribution of bar strengthdeclines smoothly with increasing Qb, with more than 40% ofthe sample having Qb<=0.1. In the context of recurrent barformation, this suggests that strongly barred states are relativelyshort-lived compared to weakly barred or nonbarred states. We do notfind compelling evidence for a bimodal distribution of bar strengths.Instead, the distribution is fairly smooth in the range0.0<=Qb<0.8. Our analysis also provides a first look atspiral strengths Qs in the OSUBGS sample, based on the sametorque indicator. We are able to verify a possible weak correlationbetween Qs and Qb, in the sense that galaxies withthe strongest bars tend to also have strong spirals.

Bar-induced perturbation strengths of the galaxies in the Ohio State University Bright Galaxy Survey - I
Bar-induced perturbation strengths are calculated for a well-definedmagnitude-limited sample of 180 spiral galaxies, based on the Ohio StateUniversity Bright Galaxy Survey. We use a gravitational torque method,the ratio of the maximal tangential force to the mean axisymmetricradial force, as a quantitative measure of the bar strength. Thegravitational potential is inferred from an H-band light distribution byassuming that the M/L ratio is constant throughout the disc. Galaxiesare deprojected using orientation parameters based on B-band images. Inorder to eliminate artificial stretching of the bulge, two-dimensionalbar-bulge-disc decomposition has been used to derive a reliable bulgemodel. This bulge model is subtracted from an image, the disc isdeprojected assuming it is thin, and then the bulge is added back byassuming that its mass distribution is spherically symmetric. We findthat removing the artificial bulge stretch is important especially forgalaxies having bars inside large bulges. We also find that the massesof the bulges can be significantly overestimated if bars are not takeninto account in the decomposition.Bars are identified using Fourier methods by requiring that the phasesof the main modes (m= 2, m= 4) are maintained nearly constant in the barregion. With such methods, bars are found in 65 per cent of the galaxiesin our sample, most of them being classified as SB-type systems in thenear-infrared by Eskridge and co-workers. We also suggest that as muchas ~70 per cent of the galaxies classified as SAB-types in thenear-infrared might actually be non-barred systems, many of them havingcentral ovals. It is also possible that a small fraction of the SAB-typegalaxies have weak non-classical bars with spiral-like morphologies.

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. II. Space Telescope Imaging Spectrograph Observations
We present a study of the stellar populations of low-luminosity activegalactic nuclei (LLAGNs). Our goal is to search for spectroscopicsignatures of young and intermediate-age stars and to investigate theirrelationship with the ionization mechanism in LLAGNs. The method used isbased on the stellar population synthesis of the optical continuum ofthe innermost (20-100 pc) regions in these galaxies. For this purpose,we have collected high spatial resolution optical (2900-5700 Å)STIS spectra of 28 nearby LLAGNs that are available in the Hubble SpaceTelescope archive. The analysis of these data is compared with a similaranalysis also presented here for 51 ground-based spectra of LLAGNs. Ourmain findings are as follows: (1) No features due to Wolf-Rayet starswere convincingly detected in the STIS spectra. (2) Young starscontribute very little to the optical continuum in the ground-basedaperture. However, the fraction of light provided by these stars ishigher than 10% in most of the weak-[O I] ([OI]/Hα<=0.25) LLAGNSTIS spectra. (3) Intermediate-age stars contribute significantly to theoptical continuum of these nuclei. This population is more frequent inobjects with weak than with strong [O I]. Weak-[O I] LLAGNs that haveyoung stars stand out for their intermediate-age population. (4) Most ofthe strong-[O I] LLAGNs have predominantly old stellar population. A fewof these objects also show a featureless continuum that contributessignificantly to the optical continuum. These results suggest that youngand intermediate-age stars do not play a significant role in theionization of LLAGNs with strong [O I]. However, the ionization inweak-[O I] LLAGNs with young and/or intermediate-age populations couldbe due to stellar processes. A comparison of the properties of theseobjects with Seyfert 2 galaxies that harbor a nuclear starburst suggeststhat weak-[O I] LLAGNs are the lower luminosity counterparts of theSeyfert 2 composite nuclei.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555. Based on observations made with the Nordic OpticalTelescope (NOT), operated on the island of La Palma jointly by Denmark,Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio delRoque de los Muchachos of the Instituto de Astrofísica deCanarias.

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. I. Ground-based Observations
We present a spectroscopic study of the stellar populations oflow-luminosity active galactic nuclei (LLAGNs). Our main goal is todetermine whether the stars that live in the innermost (100 pc scale)regions of these galaxies are in some way related to the emission-lineproperties, which would imply a link between the stellar population andthe ionization mechanism. High signal-to-noise ratio, ground-basedlong-slit spectra in the 3500-5500 Å interval were collected for60 galaxies: 51 LINERs and LINER/H II transition objects, two starburstgalaxies, and seven nonactive galaxies. In this paper, the first of aseries, we (1) describe the sample; (2) present the nuclear spectra; (3)characterize the stellar populations of LLAGNs by means of an empiricalcomparison with normal galaxies; (4) measure a set of spectral indices,including several absorption-line equivalent widths and colorsindicative of stellar populations; and (5) correlate the stellar indiceswith emission-line ratios that may distinguish between possibleexcitation sources for the gas. Our main findings are as follows: (1)Few LLAGNs have a detectable young (<~107 yr) starburstcomponent, indicating that very massive stars do not contributesignificantly to the optical continuum. In particular, no features dueto Wolf-Rayet stars were convincingly detected. (2) High-order Balmerabsorption lines of H I (HOBLs), on the other hand, are detected in ~40%of LLAGNs. These features, which are strongest in108-109 yr intermediate-age stellar populations,are accompanied by diluted metal absorption lines and bluer colors thanother objects in the sample. (3) These intermediate-age populations arevery common (~50%) in LLAGNs with relatively weak [O I] emission([OI]/Hα<=0.25) but rare (~10%) in LLAGNs with stronger [O I].This is intriguing since LLAGNs with weak [O I] have been previouslyhypothesized to be ``transition objects'' in which both an AGN and youngstars contribute to the emission-line excitation. Massive stars, ifpresent, are completely outshone by intermediate-age and old stars inthe optical. This happens in at least a couple of objects whereindependent UV spectroscopy detects young starbursts not seen in theoptical. (4) Objects with predominantly old stars span the whole rangeof [O I]/Hα values, but (5) sources with significant young and/orintermediate-age populations are nearly all (~90%) weak-[O I] emitters.These new findings suggest a link between the stellar populations andthe gas ionization mechanism. The strong-[O I] objects are most likelytrue LLAGNs, with stellar processes being insignificant. However, theweak-[O I] objects may comprise two populations, one where theionization is dominated by stellar processes and another where it isgoverned by either an AGN or a more even mixture of stellar and AGNprocesses. Possible stellar sources for the ionization include weakstarbursts, supernova remnants, and evolved poststarburst populations.These scenarios are examined and constrained by means of complementaryobservations and detailed modeling of the stellar populations inforthcoming communications.Based on observations made with the Nordic Optical Telescope, operatedon the island of La Palma jointly by Denmark, Finland, Iceland, Norway,and Sweden, in the Spanish Observatorio del Roque de los Muchachos ofthe Instituto de Astrofísica de Canárias.

Inner-truncated Disks in Galaxies
We present an analysis of the disk brightness profiles of 218 spiral andlenticular galaxies. At least 28% of disk galaxies exhibit innertruncations in these profiles. There are no significant trends oftruncation incidence with Hubble type, but the incidence among barredsystems is 49%, more than 4 times that for nonbarred galaxies. However,not all barred systems have inner truncations, and not allinner-truncated systems are currently barred. Truncations represent areal dearth of disk stars in the inner regions and are not an artifactof our selection or fitting procedures nor the result of obscuration bydust. Disk surface brightness profiles in the outer regions are wellrepresented by simple exponentials for both truncated and nontruncateddisks. However, truncated and nontruncated systems have systematicallydifferent slopes and central surface brightness parameters for theirdisk brightness distributions. Truncation radii do not appear tocorrelate well with the sizes or brightnesses of the bulges. Thissuggests that the low angular momentum material apparently missing fromthe inner disk was not simply consumed in forming the bulge population.Disk parameters and the statistics of bar orientations in our sampleindicate that the missing stars of the inner disk have not simply beenredistributed azimuthally into bar structures. The sharpness of thebrightness truncations and their locations with respect to othergalactic structures suggest that resonances associated with diskkinematics, or tidal interactions with the mass of bulge stars, might beresponsible for this phenomenon.

An Optical Study of a Sample of Spiral Galaxies
We present the first results of an observational project aimed atproducing a database of nearby face-on spiral galaxies in the optical.The project is being run at the IAC-80 telescope in Tenerife. This firstsample is made of from R and I images of NGC 428, 864, 2146, 2273, 2541,2967, 4618, 4654, 6217, and 6643. Overall geometrical parameters areobtained via ellipse fitting to the observed surface photometry. Then,structural decomposition into the main morphological components areperformed via simultaneous fitting of their analytical brightnessprofiles to the measured global radial profile. The characteristicstructural and photometric parameters of those components are soobtained. It is noticeable that the sample is fully composed by barredgalaxies, even when some of them are not classified as such in the RC3catalog. The bars have first been identified in the radial profilesobtained in the ellipse fitting, and subsequently their brightnessdistribution taken from the global radial intensity profile.

A Hubble Space Telescope Census of Nuclear Star Clusters in Late-Type Spiral Galaxies. II. Cluster Sizes and Structural Parameter Correlations
We investigate the structural properties of nuclear star clusters inlate-type spiral galaxies. More specifically, we fit analytical modelsto Hubble Space Telescope images of 39 nuclear clusters in order todetermine their effective radii after correction for the instrumentalpoint-spread function. We use the results of this analysis to comparethe luminosities and sizes of nuclear star clusters to those of otherellipsoidal stellar systems, in particular the Milky Way globularclusters. Our nuclear clusters have a median effective radius ofre=3.5 pc, with 50% of the sample falling in the range2.4pc<=re<=5.0pc. This narrow size distribution isstatistically indistinguishable from that of Galactic globular clusters,even though the nuclear clusters are, on average, 4 mag brighter thanthe old globular clusters. We discuss some possible interpretations ofthis result. From a comparison of nuclear cluster luminosities withvarious properties of their host galaxies, we confirm that more luminousgalaxies harbor more luminous nuclear clusters. It remains unclearwhether this correlation mainly reflects the influence of galaxy size,mass, and/or star formation rate. Since the brighter galaxies in oursample typically have stellar disks with a higher central surfacebrightness, nuclear cluster luminosity also correlates with thisproperty of their hosts. On the other hand, we find no evidence for acorrelation between the presence of a nuclear star cluster and thepresence of a large-scale stellar bar.

The Hα galaxy survey. I. The galaxy sample, Hα narrow-band observations and star formation parameters for 334 galaxies
We discuss the selection and observations of a large sample of nearbygalaxies, which we are using to quantify the star formation activity inthe local Universe. The sample consists of 334 galaxies across allHubble types from S0/a to Im and with recession velocities of between 0and 3000 km s-1. The basic data for each galaxy are narrowband H\alpha +[NII] and R-band imaging, from which we derive starformation rates, H\alpha +[NII] equivalent widths and surfacebrightnesses, and R-band total magnitudes. A strong correlation is foundbetween total star formation rate and Hubble type, with the strongeststar formation in isolated galaxies occurring in Sc and Sbc types. Moresurprisingly, no significant trend is found between H\alpha +[NII]equivalent width and galaxy R-band luminosity. More detailed analyses ofthe data set presented here will be described in subsequent papers.Based on observations made with the Jacobus Kapteyn Telescope operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos of the Instituto deAstrofísica de Canarias.The full version of Table \ref{tab3} is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/23 Reduced image datafor this survey can be downloaded fromhttp://www.astro.livjm.ac.uk/HaGS/

Searching for Bulges at the End of the Hubble Sequence
We investigate the stellar disk properties of a sample of 19 nearbyspiral galaxies with low inclination and late Hubble type (Scd orlater). We combine our high-resolution Hubble Space Telescope I-bandobservations with existing ground-based optical images to obtain surfacebrightness profiles that cover a high dynamic range of galactic radii.Most of these galaxies contain a nuclear star cluster, as discussed in aseparate paper. The main goal of the present work is to constrain theproperties of stellar bulges at these extremely late Hubble types. Wefind that the surface brightness profiles of the latest-type spiralgalaxies are complex, with a wide range in shapes. We have sorted oursample in a sequence, starting with ``pure'' disk galaxies(approximately 30% of the sample). These galaxies have exponentialstellar disks that extend inward to within a few tens of parsecs fromthe nucleus, where the light from the nuclear cluster starts todominate. They appear to be truly bulgeless systems. Progressing alongthe sequence, the galaxies show increasingly prominent deviations from asimple exponential disk model on kiloparsec scales. Traditionally, suchdeviations have prompted ``bulge-disk'' decompositions. Indeed, thesurface brightness profiles of these galaxies are generally well fittedby adding a second (exponential) bulge component. However, we find thatmost surface brightness profiles can be fitted equally well (or better)with a single Sérsic-type R1/n profile over the entireradial range of the galaxy without requiring a separate ``bulge''component. We warn in a general sense against identification of bulgessolely on the basis of single-band surface brightness profiles. Despitethe narrow range of Hubble types in our sample, the surface brightnessprofiles are far from uniform. The differences between the variousgalaxies appear unrelated to their Hubble types, thus questioning theusefulness of the Hubble sequence for the subcategorization of thelatest-type spiral galaxies. A number of galaxies show central excessemission on spatial scales of a few hundred parsecs that cannot beattributed to the nuclear cluster, the Sérsic-type description ofthe stellar disk, or what one would generally consider to be a bulgecomponent. The origin of this light component remains unclear.Based in part on observations made with the NASA/ESA Hubble SpaceTelescope, obtained at the Space Telescope Science Institute, which isoperated by the Association of Universities for Research in Astronomy,Inc., under NASA contract NAS 5-26555. These observations are associatedwith proposal 8599.

Molecular gas in the central regions of the latest-type spiral galaxies
Using the IRAM 30 >m telescope, we have surveyed an unbiased sampleof 47 nearby spiral galaxies of very late (Scd-Sm) Hubble-type foremission in the 12CO(1-0) and (2-1) lines. The sensitivity ofour data (a few mK) allows detection of about 60% of our sample in atleast one of the CO lines. The median detected H2 mass is1.4x 107 >msun within the central few kpc, assuming astandard conversion factor. We use the measured line intensities tocomplement existing studies of the molecular gas content of spiralgalaxies as a function of Hubble-type and to significantly improve thestatistical significance of such studies at the late end of the spiralsequence. We find that the latest-type spirals closely follow thecorrelation between molecular gas content and galaxy luminosityestablished for earlier Hubble types. The molecular gas in late-typegalaxies seems to be less centrally concentrated than in earlier types.We use Hubble Space Telescope optical images to correlate the moleculargas mass to the properties of the central galaxy disk and the compactstar cluster that occupies the nucleus of most late-type spirals. Thereis no clear correlation between the luminosity of the nuclear starcluster and the molecular gas mass, although the CO detection rate ishighest for the brightest clusters. It appears that the central surfacebrightness of the stellar disk is an important parameter for the amountof molecular gas at the galaxy center. Whether stellar bars play acritical role for the gas dynamics remains unclear, in part because ofuncertainties in the morphological classifications of our sample.

GHASP: A 3-D Survey of Spiral and Irregular Galaxies at Hα
Not Available

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

The Visibility of Galactic Bars and Spiral Structure at High Redshifts
We investigate the visibility of galactic bars and spiral structure inthe distant universe by artificially redshifting 101 B-band CCD imagesof local spiral galaxies from the Ohio State University Bright SpiralGalaxy Survey. These local galaxy images represent a much fairerstatistical baseline than the galaxy atlas images presented by Frei etal. in 1995, the most commonly used calibration sample for morphologicalwork at high redshifts. Our artificially redshifted images correspond toHubble Space Telescope I814-band observations of the localgalaxy sample seen at z=0.7, with integration times matching those ofboth the very deep northern Hubble Deep Field (HDF) data and the muchshallower HDF flanking field observations. The expected visibility ofgalactic bars is probed in two ways: (1) using traditional visualclassification and (2) by charting the changing shape of the galaxydistribution in ``Hubble space,'' a quantitative two-parameterdescription of galactic structure that maps closely onto Hubble'soriginal tuning fork. Both analyses suggest that over two-thirds ofstrongly barred luminous local spirals (i.e., objects classified as SBin the Third Reference Catalogue) would still be classified as stronglybarred at z=0.7 in the HDF data. Under the same conditions, most weaklybarred spirals (classified SAB in the Third Reference Catalogue) wouldbe classified as regular spirals. The corresponding visibility of spiralstructure is assessed visually, by comparing luminosity classificationsfor the artificially redshifted sample with the corresponding luminosityclassifications from the Revised Shapley-Ames Catalog. We find that forexposure times similar to that of the HDF, spiral structure should bedetectable in most luminous (MB~M*) low-inclination spiralgalaxies at z=0.7 in which it is present. However, obvious spiralstructure is only detectable in ~30% of comparable galaxies in the HDFflanking field data using the Wide Field Planetary Camera 2. Our studyof artificially redshifted local galaxy images suggests that, whenviewed at similar resolution, noise level, and redshift-correctedwavelength, barred spirals are less common at z~0.7 than they are atz=0.0, although more data are needed to definitively rule out thepossibility that cosmic variance is responsible for much of this effect.

A Hubble Space Telescope Census of Nuclear Star Clusters in Late-Type Spiral Galaxies. I. Observations and Image Analysis
We present new Hubble Space Telescope I-band images of a sample of 77nearby late-type spiral galaxies with low inclination. The main purposeof this catalog is to study the frequency and properties of nuclear starclusters. In 59 galaxies of our sample, we have identified a distinct,compact (but resolved), and dominant source at or very close to thephotocenter. In many cases, these clusters are the only prominent sourcewithin a few kiloparsecs from the galaxy nucleus. We present surfacebrightness profiles, derived from elliptical isophote fits, of allgalaxies for which the fit was successful. We use the fitted isophotesat radii larger than 2" to check whether the location of the clustercoincides with the photocenter of the galaxy and confirm that in nearlyall cases, we are truly dealing with ``nuclear'' star clusters. Fromanalytical fits to the surface brightness profiles, we derive thecluster luminosities after subtraction of the light contribution fromthe underlying galaxy disk and/or bulge. Based on observations made withthe NASA/ESA Hubble Space Telescope, obtained at the Space TelescopeScience Institute, which is operated by the Association of Universitiesfor Research in Astronomy, Inc., under NASA contract NAS 5-26555. Theseobservations are associated with proposal 8599.

Radio sources in low-luminosity active galactic nuclei. III. ``AGNs'' in a distance-limited sample of ``LLAGNs''
This paper presents the results of a high resolution radio imagingsurvey of all known (96) low-luminosity active galactic nuclei (LLAGNs)at D <= 19 Mpc. We first report new 2 cm (150 mas resolution usingthe VLA) and 6 cm (2 mas resolution using the VLBA) radio observationsof the previously unobserved nuclei in our samples and then presentresults on the complete survey. We find that almost half of all LINERsand low-luminosity Seyferts have flat-spectrum radio cores when observedat 150 mas resolution. Higher (2 mas) resolution observations of aflux-limited subsample have provided a 100% (16 of 16) detection rate ofpc-scale radio cores, with implied brightness temperatures gtrsim108 K. The five LLAGNs with the highest core radio fluxesalso have pc-scale ``jets''. Compact radio cores are almost exclusivelyfound in massive ellipticals and in type 1 nuclei (i.e. nuclei withbroad Hα emission). Only a few ``transition'' nuclei have compactradio cores; those detected in the radio have optical emission-linediagnostic ratios close to those of LINERs/Seyferts. This indicates thatsome transition nuclei are truly composite Seyfert/LINER+H II regionnuclei, with the radio core power depending on the strength of theformer component. The core radio power is correlated with the nuclearoptical ``broad'' Hα luminosity, the nuclear optical ``narrow''emission-line luminosity and width, and with the galaxy luminosity. Inthese correlations LLAGNs fall close to the low-luminosityextrapolations of more powerful AGNs. The scalings suggest that many ofthe radio-non-detected LLAGNs are simply lower power versions of theradio-detected LLAGNs. The ratio of core radio power to nuclear opticalemission-line luminosity increases with increasing bulge luminosity forall LLAGNs. Also, there is evidence that the luminosity of the diskcomponent of the galaxy is correlated with the nuclear emission-lineluminosity (but not the core radio power). About half of all LLAGNs withmultiple epoch data show significant inter-year radio variability.Investigation of a sample of ~ 150 nearby bright galaxies, most of themLLAGNs, shows that the nuclear (<=150 mas size) radio power isstrongly correlated with both the black hole mass and the galaxy bulgeluminosity; linear regression fits to all ~ 150 galaxies give: logP2 cm = 1.31(+/-0.16) log {MMDO} + 8.77 and logP2 cm = 1.89(+/-0.21) log LB(bulge) -0.17. Lowaccretion rates (<=10-2-10-3 of the Eddingtonrate) are implied in both advection- and jet-type models. In brief, allevidence points towards the presence of accreting massive black holes ina large fraction, perhaps all, of LLAGNs, with the nuclear radioemission originating in either the accretion inflow onto the massiveblack hole or from jets launched by this black hole-accretion disksystem.

The Soft X-Ray Properties of Nearby Low-Luminosity Active Galactic Nuclei and their Contribution to the Cosmic X-Ray Background
We have examined ROSAT soft X-ray observations of a complete,distance-limited sample of Seyfert and LINER galaxies. X-ray data areavailable for 46 out of 60 such objects which lie within a hemisphere ofradius 18 Mpc. We have constructed radial profiles of the nuclearsources in order to characterize their spatial extent and, in somecases, to help constrain the amount of flux associated with a nuclearpoint source. PSPC data from ROSAT have been used to explore thespectral characteristics of the objects with sufficient numbers ofdetected counts. Based on the typical spectral parameters of thesesources, we have estimated the luminosities of the weaker sources in thesample. We then explore the relationship between the soft X-ray andHα luminosities of the observed objects; these quantities arecorrelated for higher luminosity AGNs. We find a weak correlation at lowluminosities as well, and we have used this relationship to predictLX for the 14 objects in our sample that lack X-ray data.Using the results of the spatial and spectral analyses, we have comparedthe X-ray properties of Seyferts and LINERs, finding no strikingdifferences between the two classes of objects. However, both types ofobjects often exhibit significant amounts of extended emission, whichcould minimize the appearance of differences in their nuclearproperties. The soft X-ray characteristics of the type 1 and type 2active galaxies in the sample are also discussed. We then compute thelocal X-ray volume emissivity of low-luminosity Seyferts and LINERs andinvestigate their contribution to the cosmic X-ray background. The0.5-2.0 keV volume emissivity of 2.2×1038 ergss-1 Mpc-3 we obtain for our sample suggests thatlow-luminosity AGNs produce at least 9% of the soft X-ray background.

Population synthesis of Hii galaxies
We study the stellar population of galaxies with active star formation,determining ages of the stellar components by means of spectralpopulation synthesis of their absorption spectra. The data consist ofoptical spectra of 185 nearby (z<=0.075) emission-line galaxies. Theyare mostly Hii galaxies, but we also include some starbursts and Seyfert2s, for comparison purposes. They were grouped into 19 highsignal-to-noise ratio template spectra, according to their continuumdistribution, absorption- and emission-line characteristics. Thetemplates were then synthesized with a star cluster spectral base. Thesynthesis results indicate that Hii galaxies are typically age-compositestellar systems, presenting important contributions from generations upto as old as 500Myr. We detect a significant contribution of populationswith ages older than 1Gyr in two groups of Hii galaxies. The agedistributions of stellar populations among starbursts can varyconsiderably despite similarities in the emission-line spectra. In thecase of Seyfert 2 groups we obtain important contributions from the oldpopulation, consistent with a bulge. From the diversity of starformation histories, we conclude that typical Hii galaxies in the localUniverse are not systems presently forming their first stellargeneration.

H I observations of emission-line galaxies
We present single-dish Lovell telescope H i observations of a sample of67 emission-line and UV-excess galaxies, of which 52 are taken from theUniversity of Michigan (UM) catalogue. In addition, H i observations of24 gas-rich irregular galaxies are presented. We find that emission-linegalaxies are H i-rich with a median H i mass to blue luminosity ratioMHI/LB of ~ 0.45 Msun/Lsun.Within the UM galaxy sample the MHI/LB ratio tendsto increase with decreasing luminosity. Finally, it is found that themost H i-rich UM galaxies are the most metal deficient, implying thatthese objects are less evolved.

Arcsecond Positions of UGC Galaxies
We present accurate B1950 and J2000 positions for all confirmed galaxiesin the Uppsala General Catalog (UGC). The positions were measuredvisually from Digitized Sky Survey images with rms uncertaintiesσ<=[(1.2")2+(θ/100)2]1/2,where θ is the major-axis diameter. We compared each galaxymeasured with the original UGC description to ensure high reliability.The full position list is available in the electronic version only.

The I-Band Tully-Fisher Relation for SC Galaxies: 21 Centimeter H I Line Data
A compilation of 21 cm line spectral parameters specifically designedfor application of the Tully-Fisher (TF) distance method is presentedfor 1201 spiral galaxies, primarily field Sc galaxies, for which opticalI-band photometric imaging is also available. New H I line spectra havebeen obtained for 881 galaxies. For an additional 320 galaxies, spectraavailable in a digital archive have been reexamined to allow applicationof a single algorithm for the derivation of the TF velocity widthparameter. A velocity width algorithm is used that provides a robustmeasurement of rotational velocity and permits an estimate of the erroron that width taking into account the effects of instrumental broadeningand signal-to-noise. The digital data are used to establish regressionrelations between measurements of velocity widths using other commonprescriptions so that comparable widths can be derived throughconversion of values published in the literature. The uniform H I linewidths presented here provide the rotational velocity measurement to beused in deriving peculiar velocities via the TF method.

The I-Band Tully-Fisher Relation for SC Galaxies: Optical Imaging Data
Properties derived from the analysis of photometric I-band imagingobservations are presented for 1727 inclined spiral galaxies, mostly oftypes Sbc and Sc. The reduction, parameter extraction, and errorestimation procedures are discussed in detail. The asymptotic behaviorof the magnitude curve of growth and the radial variation in ellipticityand position angle are used in combination with the linearity of thesurface brightness falloff to fit the disk portion of the profile. TotalI-band magnitudes are calculated by extrapolating the detected surfacebrightness profile to a radius of eight disk scale lengths. Errors inthe magnitudes, typically ~0.04 mag, are dominated by uncertainties inthe sky subtraction and disk-fitting procedures. Comparison is made withthe similar imaging database of Mathewson, Ford, & Buchhorn, both aspresented originally by those authors and after reanalyzing theirdigital reduction files using identical disk-fitting procedures. Directcomparison is made of profile details for 292 galaxies observed incommon. Although some differences occur, good agreement is found,proving that the two data sets can be used in combination with onlyminor accommodation of those differences. The compilation of opticalproperties presented here is optimized for use in applications of theTully-Fisher relation as a secondary distance indicator in studies ofthe local peculiar velocity field.

B and R CCD surface photometry of late-type galaxies
We present B and R CCD observations of 16 late-type galaxies, mainlyMagellanic irregulars and blue compact galaxies, at a limiting surfacebrightness of mu_ {B} ~ 26-27 mag arcsec(-2) . The sample is derivedfrom a H I-rich subset of an H I survey of late-type dwarfs and consistsof objects with -19.5<=MB<=-14.4, nine galaxies beingfainter than MB=-17 (H0=75 km s(-1) Mpc(-1) ).Radial luminosity distributions for all the sample objects arepresented. We find that the blue compacts become redder in (B-R) withincreasing distances from their centres confirming other studiesindicating that recent star formation in these galaxies may be centrallyconcentrated. The Im and Sm galaxies show flatter (B-R) colour profilesindicating less centrally concentrated recent star formation. Themajority of the galaxies have an identifiable exponential disk whilehalf also have a central bulge.

Disk Galaxies in the Outer Local Supercluster: Optical CCD Surface Photometry and Distribution of Galaxy Disk Parameters
We report new B-band CCD surface photometry on a sample of 76 diskgalaxies brighter than B_T = 14.5 mag in the Uppsala General Catalogueof Galaxies that are confined within a volume located in the outer partof the Local Supercluster. With our earlier published I-band CCD andhigh signal-to-noise ratio 21 cm H I data, this paper completes ouroptical surface photometry campaign on this galaxy sample. As anapplication of this data set, the B-band photometry is used here toillustrate two selection effects that have been somewhat overlooked inthe literature but that may be important in deriving the distributionfunction of disk central surface brightness (CSB) of disk galaxies froma diameter- and/or flux-limited sample: a Malmquist-type bias againstdisk galaxies with small disk scale lengths (DSLs) at a given CSB and adisk inclination-dependent selection effect that may, for example, biastoward inclined disks near the threshold of a diameter-limited selectionif disks are not completely opaque in the optical. Taking intoconsideration these selection effects, we present a method ofconstructing a volume-sampling function and a way to interpret thederived distribution function of CSB and DSL. Application of this methodto our galaxy sample implies that if galaxy disks are optically thin,CSB and DSL may well be correlated in the sense that, up to aninclination-corrected limiting CSB of about 24.5 mag arcsec^-2 that isadequately probed by our galaxy sample, the DSL distribution of galaxieswith a lower CSB may have a longer tail toward large values unless thedistribution of disk galaxies as a function of CSB rises rapidly towardfaint values.

Bulge-Disk Decomposition of 659 Spiral and Lenticular Galaxy Brightness Profiles
We present one of the largest homogeneous sets of spiral and lenticulargalaxy brightness profile decompositions completed to date. The 659galaxies in our sample have been fitted with a de Vaucouleurs law forthe bulge component and an inner-truncated exponential for the diskcomponent. Of the 659 galaxies in the sample, 620 were successfullyfitted with the chosen fitting functions. The fits are generally welldefined, with more than 90% having rms deviations from the observedprofile of less than 0.35 mag. We find no correlations of fittingquality, as measured by these rms residuals, with either morphologicaltype or inclination. Similarly, the estimated errors of the fittedcoefficients show no significant trends with type or inclination. Thesedecompositions form a useful basis for the study of the lightdistributions of spiral and lenticular galaxies. The object base issufficiently large that well-defined samples of galaxies can be selectedfrom it.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:01h12m55.60s
Aparent dimensions:3.311′ × 2.344′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 428

→ Request more catalogs and designations from VizieR