Poчetna     Да почнемо     To Survive in the Universe    
Inhabited Sky
    News@Sky     Астро Фотографије     Колекција     Форум     Blog New!     FAQ(Често постављана питања     Штампа     Улогуј се  

NGC 1847


Садржај

Слике

Уплоадјуј своје слике

DSS Images   Other Images


Везани чланци

A hypervelocity star from the Large Magellanic Cloud
We study the acceleration of the star HE0437-5439to hypervelocity anddiscuss its possible origin in the Large Magellanic Cloud (LMC). Thestar has a radial velocity of 723kms-1 and is located at adistance of 61 kpc from the Sun. With a mass of about8Msolar, the traveltime from the Galactic Centre is about 100Myr, much longer than its main-sequence lifetime. Given the relativelysmall distance to the LMC (18 kpc), we consider it likely thatHE0437-5439originated in the Cloud rather than in the Galactic Centrelike the other hypervelocity stars. The minimum ejection velocityrequired to travel from the LMC to its current location within itslifetime is about 500kms-1. Such a high velocity can only beobtained in a dynamical encounter with a massive black hole. We performthree-body scattering simulations in which a stellar binary encounters amassive black hole, and find that a black hole more massive than103Msolar is necessary to explain the highvelocity of HE0437-5439. We look for possible parent clusters forHE0437-5439, and find that NGC2100 and 2004 are young enough to hoststars coeval to HE0437-5439and dense enough to produce anintermediate-mass black hole able to eject an 8-Msolar starwith hypervelocity.

Ages and Metallicities of Extragalactic Globular Clusters from Spectral and Photometric Fits of Stellar Population Synthesis Models
Spectra of galaxies contain an enormous amount of information about therelative mixture of ages and metallicities of constituent stars. Wepresent a comprehensive study designed to extract the maximuminformation from spectra of data quality typical in large galaxysurveys. These techniques are not intended for detailed stellarpopulation studies that use high-quality spectra. We test techniques ona sample of globular clusters, which should consist of single stellarpopulations and provide good test cases, using the Bruzual-Charlothigh-resolution stellar population synthesis models to simultaneouslyestimate the ages and metallicities of 101 globular clusters in M31 andthe Magellanic Clouds. The clusters cover a wide range of ages andmetallicities, 4 Myr

A Database of 2MASS Near-Infrared Colors of Magellanic Cloud Star Clusters
The (rest-frame) near-IR domain contains important stellar populationdiagnostics and is often used to estimate masses of galaxies at low, aswell as high, redshifts. However, many stellar population models arestill relatively poorly calibrated in this part of the spectrum. Toallow an improvement of this calibration we present a new database ofintegrated near-IR JHKs magnitudes for 75 star clusters inthe Magellanic Clouds, using the Two Micron All Sky Survey (2MASS). Themajority of the clusters in our sample have robust age and metallicityestimates from color-magnitude diagrams available in the literature, andpopulate a range of ages from 10 Myr to 15 Gyr and a range in [Fe/H]from -2.17 to +0.01 dex. A comparison with matched star clusters in the2MASS Extended Source Catalog (XSC) reveals that the XSC only provides agood fit to the unresolved component of the cluster stellar population.We also compare our results with the often-cited single-channel JHKphotometry of Persson and coworkers and find significant differences,especially for their 30" diameter apertures, up to ~2.5 mag in the Kband, more than 1 mag in J-K, and up to 0.5 mag in H-K. Usingsimulations to center apertures based on maximum light throughput (asperformed by Persson et al.), we show that these differences can beattributed to near-IR-bright cluster stars (e.g., carbon stars) locatedaway from the true center of the star clusters. The wide age andmetallicity coverage of our integrated JHKs photometry sampleconstitute a fundamental data set for testing population synthesis modelpredictions and for direct comparison with near-IR observations ofdistant stellar populations.

Resolved Massive Star Clusters in the Milky Way and Its Satellites: Brightness Profiles and a Catalog of Fundamental Parameters
We present a database of structural and dynamical properties for 153spatially resolved star clusters in the Milky Way, the Large and SmallMagellanic Clouds, and the Fornax dwarf spheroidal. This databasecomplements and extends others in the literature, such as those ofHarris and Mackey & Gilmore. Our cluster sample comprises 50 ``youngmassive clusters'' in the LMC and SMC, and 103 old globular clustersbetween the four galaxies. The parameters we list include central andhalf-light-averaged surface brightnesses and mass densities; core andeffective radii; central potentials, concentration parameters, and tidalradii; predicted central velocity dispersions and escape velocities;total luminosities, masses, and binding energies; central phase-spacedensities; half-mass relaxation times; and ``κ-space'' parameters.We use publicly available population-synthesis models to computestellar-population properties (intrinsic B-V colors, reddenings, andV-band mass-to-light ratios) for the same 153 clusters plus another 63globulars in the Milky Way. We also take velocity-dispersionmeasurements from the literature for a subset of 57 (mostly old)clusters to derive dynamical mass-to-light ratios for them, showing thatthese compare very well to the population-synthesis predictions. Thecombined data set is intended to serve as the basis for futureinvestigations of structural correlations and the fundamental plane ofmassive star clusters, including especially comparisons between thesystemic properties of young and old clusters.The structural and dynamical parameters are derived from fitting threedifferent models-the modified isothermal sphere of King; an alternatemodified isothermal sphere based on the ad hoc stellar distributionfunction of Wilson; and asymptotic power-law models withconstant-density cores-to the surface-brightness profile of eachcluster. Surface-brightness data for the LMC, SMC, and Fornax clustersare based in large part on the work of Mackey & Gilmore, but includesignificant supplementary data culled from the literature and importantcorrections to Mackey & Gilmore's V-band magnitude scale. Theprofiles of Galactic globular clusters are taken from Trager et al. Weaddress the question of which model fits each cluster best, finding inthe majority of cases that the Wilson models-which are spatially moreextended than King models but still include a finite, ``tidal'' cutoffin density-fit clusters of any age, in any galaxy, as well as or betterthan King models. Untruncated, asymptotic power laws often fit about aswell as Wilson models but can be significantly worse. We argue that theextended halos known to characterize many Magellanic Cloud clusters maybe examples of the generic envelope structure of self-gravitating starclusters, not just transient features associated strictly with youngage.

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

Near-infrared color evolution of LMC clusters
We present here the digital aperture photometry for 28 LMC clusterswhose ages are between 5 Myr and 12 Gyr. This photometry is based on ourimaging observations in JHK and contains integrated magnitudes andcolors as a function of aperture radius. In contrast to optical colors,our near-infrared colors do not show any strong dependence on clusterages.Tables 2 and 3 and Fig. 2 are only available in electronic form athttp://www.edpsciences.org

Surface brightness profiles and structural parameters for 53 rich stellar clusters in the Large Magellanic Cloud
We have compiled a pseudo-snapshot data set of two-colour observationsfrom the Hubble Space Telescope archive for a sample of 53 rich LMCclusters with ages of 106-1010 yr. We presentsurface brightness profiles for the entire sample, and derive structuralparameters for each cluster, including core radii, and luminosity andmass estimates. Because we expect the results presented here to form thebasis for several further projects, we describe in detail the datareduction and surface brightness profile construction processes, andcompare our results with those of previous ground-based studies. Thesurface brightness profiles show a large amount of detail, includingirregularities in the profiles of young clusters (such as bumps, dipsand sharp shoulders), and evidence for both double clusters andpost-core-collapse (PCC) clusters. In particular, we find power-lawprofiles in the inner regions of several candidate PCC clusters, withslopes of approximately -0.7, but showing considerable variation. Weestimate that 20 +/- 7 per cent of the old cluster population of theLarge Magellanic Cloud (LMC) has entered PCC evolution, a similarfraction to that for the Galactic globular cluster system. In addition,we examine the profile of R136 in detail and show that it is probablynot a PCC cluster. We also observe a trend in core radius with age thathas been discovered and discussed in several previous publications bydifferent authors. Our diagram has better resolution, however, andappears to show a bifurcation at several hundred Myr. We argue that thisobserved relationship reflects true physical evolution in LMC clusters,with some experiencing small-scale core expansion owing to mass loss,and others large-scale expansion owing to some unidentifiedcharacteristic or physical process.

A statistical study of binary and multiple clusters in the LMC
Based on the Bica et al. (\cite{bica}) catalogue, we studied the starcluster system of the LMC and provide a new catalogue of all binary andmultiple cluster candidates found. As a selection criterion we used amaximum separation of 1farcm4 corresponding to 20 pc (assuming adistance modulus of 18.5 mag). We performed Monte Carlo simulations andproduced artificial cluster distributions that we compared with the realone in order to check how many of the found cluster pairs and groups canbe expected statistically due to chance superposition on the plane ofthe sky. We found that, depending on the cluster density, between 56%(bar region) and 12% (outer LMC) of the detected pairs can be explainedstatistically. We studied in detail the properties of the multiplecluster candidates. The binary cluster candidates seem to show atendency to form with components of similar size. When possible, westudied the age structure of the cluster groups and found that themultiple clusters are predominantly young with only a few cluster groupsolder than 300 Myr. The spatial distribution of the cluster pairs andgroups coincides with the distribution of clusters in general; however,old groups or groups with large internal age differences are mainlylocated in the densely populated bar region. Thus, they can easily beexplained as chance superpositions. Our findings show that a formationscenario through tidal capture is not only unlikely due to the lowprobability of close encounters of star clusters, and thus the evenlower probability of tidal capture, but the few groups with largeinternal age differences can easily be explained with projectioneffects. We favour a formation scenario as suggested by Fujimoto &Kumai (\cite{fk}) in which the components of a binary cluster formedtogether and thus should be coeval or have small age differencescompatible with cluster formation time scales. Table 6 is only availablein electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/391/547

A Large and Homogeneous Sample of CMDs of LMC Stellar Clusters
We present the photometric results of 21 stellar clusters of the LargeMagellanic Cloud. The WFPC2 images were retrieved from the HST archive.Simple stellar populations in a large spread of age are well representedin the sample of color-magnitude diagrams shown here.

Large Magellanic Cloud stellar clusters. I. 21 HST colour magnitude diagrams
We present WFPC2 photometry of 21 stellar clusters of the LargeMagellanic Cloud obtained on images retrieved from the Hubble SpaceTelescope archive. The derived colour magnitude diagrams (CMDs) arepresented and discussed. This database provides a sample of CMDsrepresenting, with reliable statistics, simple stellar populations witha large spread of age. The stars in the core of the clusters are allresolved and measured at least down to the completeness limit; themagnitudes of the main sequence terminations and of the red giant clumpare also evaluated for each cluster, together with the radius at halfmaximum of the star density. Based on observations made with theNASA/ESA Hubble Space Telescope, obtained from the data archive at theSpace Telescope Institute. STScI is operated by the association ofUniversities for Research in Astronomy, Inc. under the NASA contract NAS5-26555. Table 1 is only available in electronic form athttp://www.edpsciences.org

Calibration of the MACHO Photometry Database
The MACHO Project is a microlensing survey that monitors thebrightnesses of ~60 million stars in the Large Magellanic Cloud (LMC),Small Magellanic Cloud, and Galactic bulge. Our database presentlycontains about 80 billion photometric measurements, a significantfraction of all astronomical photometry. We describe the calibration ofMACHO two-color photometry and transformation to the standardKron-Cousins V and R system. Calibrated MACHO photometry may be properlycompared with all other observations on the Kron-Cousins standardsystem, enhancing the astrophysical value of these data. For ~9 millionstars in the LMC bar, independent photometric measurements of ~20,000stars with V<~18 mag in field-overlap regions demonstrate an internalprecision σV=0.021, σR=0.019,σV-R=0.028 mag. The accuracy of the zero point in thiscalibration is estimated to be +/-0.035 mag for stars with colors in therange -0.1 mag

Synthetic Spectra of H Balmer and HE I Absorption Lines. II. Evolutionary Synthesis Models for Starburst and Poststarburst Galaxies
We present evolutionary stellar population synthesis models to predictthe spectrum of a single-metallicity stellar population, with a spectralsampling of 0.3 Å in five spectral regions between 3700 and 5000Å. The models, which are optimized for galaxies with active starformation, synthesize the profiles of the hydrogen Balmer series(Hβ, Hγ, Hδ, H8, H9, H10, H11, H12, and H13) and theneutral helium absorption lines (He I λ4922, He I λ4471,He I λ4388, He I λ4144, He I λ4121, He Iλ4026, He I λ4009, and He I λ3819) for a burst withan age ranging from 106 to 109 yr, and differentassumptions about the stellar initial mass function (IMF). Continuousstar formation models lasting for 1 Gyr are also presented. The inputstellar library includes non-LTE absorption profiles for stars hotterthan 25,000 K and LTE profiles for lower temperatures. The temperatureand gravity coverage is 4000 K<=Teff<=50,000 K and0.0<=logg<=5.0, respectively. The metallicity is solar. It is found thatthe Balmer and He I line profiles are sensitive to the age, exceptduring the first 4 Myr of the evolution, when the equivalent widths ofthese lines are constant. At these early stages of the evolution, theprofiles of the lines are also sensitive to the IMF. However, strong HBalmer and He I lines are predicted even when the low-mass cutoff of theIMF is as high as 10 Msolar. The equivalent widths of theBalmer lines range from 2 to 16 Å and those of the He I lines from0.2 to 1.2 Å. During the nebular phase (cluster younger than about10 Myr), Hβ ranges from 2 to 5 Å and He I λ4471 rangesbetween 0.5 and 1.2 Å. The strength of the lines is maximum whenthe cluster is a few hundred (for the Balmer lines) and a few tens (forthe He I lines) of Myr old. In the continuous star formation scenario,the strength of the Balmer and He I lines increases monotonically withtime until 500 and 100 Myr, respectively. However, the lines are weakerthan in the burst models owing to the dilution of the Balmer and He Ilines by the contribution from very massive stars. The high spectralresolution of the profiles is useful to reproduce the absorption wingsobserved in regions of recent star formation and to estimate the effectof the underlying absorption on the nebular emission lines. The strengthof the nebular emission Balmer and He I lines compared with the stellarabsorption components indicates that Hδ and the higher order termsof the Balmer series and He I are dominated by the stellar absorptioncomponent if an instantaneous burst is older than ~=5 Myr. Some of theHe I lines (e.g., He I λ3819 and He I λ4922) are morefavorable than others (e.g., He I λ4471) for the detection ofstellar features in the presence of nebular emission. We estimate thatthe correction to the He I λ4471 nebular emission line due to thestellar absorption is between 5% and 25%, if the nebular emission hasequivalent width between 10 and 2.5 Å (corresponding to a burstage between 1 and 3 Myr). The models can be used to date starburst andpoststarburst galaxies until 1 Gyr. They have been tested on data forclusters in the LMC, the super-star cluster B in the starburst galaxyNGC 1569, the nucleus of the dwarf elliptical NGC 205 and a luminous``E+A'' galaxy. The full data set is available for retrieval at ourwebsites or on request from the authors.

The Optical Gravitational Lensing Experiment. Catalog of Star Clusters from the Large Magellanic Cloud
We present the catalog of star clusters found in the area of about 5.8square degree in the central regions of the Large Magellanic Cloud. Itcontains data for 745 clusters. 126 of them are new objects. For eachcluster equatorial coordinates, radius, approximate number of membersand cross-identification are provided. Photometric data for all clusterspresented in the catalog and Atlas consisting of finding charts andcolor-magnitude diagrams are available electronically from the OGLEInternet archive.

UBV photometry of Galactic foreground and LMC member stars - III. LMC member stars - a new data base
New UBV photometry for 878 luminous member stars of the Large MagellanicCloud (LMC) and 13 stars of uncertain membership is presented. The datawill be available at Centre de Données astronomiques deStrasbourg. Including former observations now UBV data are available foraltogether 2470 luminous LMC stars and 2106 foreground stars plus 65stars of uncertain membership. The observations have been used alreadyfor several investigations dealing e.g. with interstellar reddeninglines and intrinsic colours, the dust distribution and the calibrationof charge-coupled device exposures.

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud
A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.

Keck Spectroscopy of Candidate 97Proto-Globular Clusters in NGC 1275
Keck spectroscopy of five proto-globular cluster candidates in NGC 1275has been combined with Hubble Space Telescope Wide Field PlanetaryCamera 2 photometry to explore the nature and origin of these objectsand discriminate between merger and cooling-flow scenarios for globularcluster formation. The objects we have studied are not H ii regions, butrather star clusters, yet their integrated spectral properties do notresemble young or intermediate-age Magellanic Cloud clusters or MilkyWay open clusters. The clusters' Balmer absorption appears to be toostrong to be consistent with any of the standard Bruzual & Charlotevolutionary models at any metallicity. If the Bruzual & Charlotmodels are adopted, an initial mass function (IMF) that is skewed tohigh masses provides a better fit to the data of the proto-globularcluster candidates. A truncated IMF with a mass range of 2-3 M_ȯreproduces the observed Balmer equivalent widths and colors at ~450 Myr.Formation in a continuous cooling flow appears to be ruled out since theage of the clusters is much larger than the cooling time, the spatialscale of the clusters is much smaller than the cooling-flow radius, andthe deduced star formation rate in the cooling flow favors a steeprather than a flat IMF. A merger would have to produce clusters only inthe central few kiloparsecs, presumably from gas in the merging galaxiesthat was channeled rapidly to the center. Widespread shocks in merginggalaxies cannot have produced these clusters. If these objects areconfirmed to have a relatively flat, or truncated, IMF, it is unclearwhether they will evolve into objects that we would regard as bona fideglobular clusters. Based on observations obtained at the W. M. KeckObservatory, which is operated jointly by the California Institute ofTechnology and the University of California.

The ellipticities of Galactic and Large Magellanic Cloud globular clusters
The correlations between the ellipticity and the age and mass of LMCglobular clusters are examined, and both are found to be weak. It isconcluded that neither of these properties is mainly responsible for theobserved differences in the LMC and Galactic globular clusterellipticity distributions. Most importantly, age cannot be the primaryfactor in the LMC-Galaxy ellipticity differences, even if there is arelationship, as even the oldest LMC clusters are more elliptical thantheir Galactic counterparts. The strength of the tidal field of theparent galaxy is proposed as the dominant factor in determining theellipticities of that galaxy's globular clusters. A strong tidal fieldrapidly destroys velocity anisotropies in initially triaxial, rapidlyrotating elliptical globular clusters. A weak tidal field, however, isunable to remove these anisotropies and the clusters remain close totheir initial shapes.

Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud
We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.

Blue-violet spectral evolution of young Magellanic Cloud clusters
We study the integrated spectral evolution in the blue-violet range of97 blue star clusters in the Magellanic Clouds, from those associatedwith gas emission to those as old as a few hundred Myr. Some clustersare dominated by the flux of those massive stars that pass throughevolutionary stages such as Wolf-Rayet, Luminous Blue Variable, Be, andsupergiant stars of different temperatures. The relationships amongspectral features such as absorption and emission lines, Balmerdiscontinuity and Balmer continuum are used to study the spectralevolution of the clusters. Finally, we sort into groups spectra ofsimilar evolutionary stages, creating a template spectral library withpossible applications in stellar populations syntheses of star-forminggalaxies and in the spectral simulation of bursts of star formation withdifferent mean ages and durations.

Moment analysis applied to LMC star clusters
Statistical moment-based ellipse fitting is performed on observations ofLarge Magellanic Cloud clusters, confirming that trends are evident intheir position angles and ellipticities, as had been reported in theliterature. Artificial cluster images with known parameters aregenerated, and subjected to the same analysis techniques, revealingapparent trends caused by stochastic processes. Caution should thereforebe exercised in the interpretation of observational trends in young LMCclusters.

Bar star clusters in the LMC - Formation history from UBV integrated photometry
The sample of star clusters in the LMC Bar region with integrated UBVphotometry was enlarged by approximately a factor four, totaling 129objects. The (B-V) histogram gap between blue and red clustersdisappears with this deeper sample. Age groups in terms of equivalentSWB types were derived and their spatial distribution studied. Clustersyounger than t about 200 Myr are not homogeneously distributed throughthe bar. In particular a strong star forming event at t about 100 Myrwas detected in the eastern part of the Bar, consisting of a compactgrouping of seven coeval clusters around NGC 2058 and NGC 2065. Also, 11close pairs and two trios are analyzed, and the colors indicate thatonly four pairs are clearly not coeval.

Near-infrared spectral evolution of blue LMC clusters : a comparison with galactic open clusters.
Abstract image available at:http://adsabs.harvard.edu/abs/1990RMxAA..21..202B

Blue Magellanic clusters - Near-infrared spectral evolution
New integrated spectra in the range 5600-10,000 A are presented for 28LMC and 3 SMC young star clusters. The equivalent widths (W) ofprominent features and the continuum distribution are measured. Theanalysis, supplemented by 8 additional LMC clusters from previousstudies, indicates that the red supergiant phase is indeed verytime-peaked, occuring from 7 to 12 Myr. In addition to the previous caseof NGC 2004, it is found that NGC 1805, NGC 1994, NGC 2002, NGC 2098,and NGC 2100 (as well as NGC 2011 to a lesser extent) are undergoingthis phase. The red supergiant phase is clearly denoted by strong TiObands and Ca II triplet as well as a flat continuum or (in extremecases) a continuum with positive slope above 6000 A.

Ultraviolet colors as age indicators for LMC clusters
Empirical correlations are found between log ages and the intrinsicultraviolet colors for 27 LMC clusters. The problems and limitations ofusing these correlations as age indicators for LMC clusters and otherstellar populations are discussed. The correlations are used to estimatethe ages of two LMC clusters of unknown age (NGC 1968 and NGC 1974) andthe nuclei of two nearby blue compact dwarf galaxies (NGC 1705 and NGC5253). For the latter two objects optical- and ultraviolet-based ageestimates are in good agreement.

Core expansion in young star clusters in the Large Magellanic Cloud
The core radii of 18 rich star clusters in the LMC with ages from 10 Myrto 1 Gyr. Data for an additional 17 clusters with ages from 1 Myr to 10Gyr are available in the literature. The combined sample shows that thecore radii increase from about 0 to about 5 pc between about 1 Myr and 1Gyr, and then begin to decrease again. The expansion of the cores isprobably driven by mass loss from evolving stars. Models of clusterevolution show that the rate of increase in core radius is sensitive tothe slope of the initial mass function. The observed core radius-agerelation for the LMC clusters favors an intial mass function with slopeslightly flatter than the Salpeter value.

Spectral evolutionary synthesis models of metal-poor star forming regions
Results are presented from spectral evolutionary synthesis modeling ofmetal-poor star forming regions. A description is given of the stellardata base used, including the effects of stellar mass loss andconvective overshooting, the absorption features, and luminosityindicators. The gaseous emission component and synthesis method arediscussed. Several models of the spectral evolution of the regions arecalculated and compared with empirical data.

Low-luminosity radio sources in early-type galaxies
A sensitive radio continuum survey of 114 nearby E and S0 galaxies hasbeen made to search for weak sources. The radio detection rate is 42percent, with a flux limit of 0.8 mJy at 5 GHz. By deriving the radioluminosity function for a complete sample, it is shown that most brightearly-type galaxies have low-luminosity nonthermal radio sources.Galaxies of similar optical luminosity vary widely in radio luminosity,but a characteristic radio power rises roughly as the optical luminositysquared. S0 galaxies have weaker radio sources on average thanelliptical galaxies, but this can be explained by the low luminosity ofmost S0 bulges relative to ellipticals. No correlation is found betweenradio power and axial ratio for galaxies with radio luminosities below10 to the 23rd W/Hz.

Ellipticities at R(h) of LMC star clusters
The projected ellipticities of 53 populous LMC star clusters have beenderived by means of PDS 1010A scans and a computer interactive method ofreduction implemented on an Apollo 570 workstation. Film copies of apair of J and U plates taken with the 1.2 m UK Schmidt Telescope inAustralia were used. The ellipticities derived here agree with thosefound by previous investigators, when comparisons were possible at thesame radius. Ellipticity variations within individual globular clustersare seen to be a common phenomenon, so the ellipticities e(h) at adistance corresponding to the half-mass radius R(h) from the center wereadopted to represent the cluster's flatness. Using these values for theLMC clusters, it is found that LMC clusters are more elliptical thanthose of the Galaxy. Although the young LMC globular clusters show atendency to be more elliptical than the old ones, there is no strongevidence for a significant difference among them. Finally, e(h) wasfound to increase with the total mass of the clusters, possiblyindicating that high-mass clusters have higher angular momentum, or havemore difficulty in shedding angular momentum, than do low mass clusters,and remain longer in their initial flattened shape.

Long-period variables in the Large Magellanic Cloud. I - Search and discovery
A search for long-period variables has been made in the bar and southernregions of the LMC using a series of I band UKST plates, resulting inthe discovery of 471 Mira variables and 572 SRa variables. By usingmainly automated methods of determining periods and amplitudes ofvariability, corrections for incompleteness have been estimated. TheMiras show a trend toward larger amplitudes and brighter luminositieswith period, both of which should contribute to increase mass-lossrates. The period distribution falls abruptly longward of about 420 daysand shortward of about 140 days, whereas the corresponding limits in thesolar neighborhood are about 450 and about 220 days, suggestingdifferent histories of star formation in the LMC and the Galaxy. Inparticular, there appear to be relatively more old stars in the LMC.

The stellar content of rich young clusters in the Large Magellanic Cloud
Initial mass functions (IMFs) of six young rich clusters in the LMC havebeen determined from star counts on photographic plates with differentlimiting magnitudes. Over the range of stellar masses from 1.5 to 6solar masses, very flat IMF slopes between -0.2 and 0.8 are found.Possible explanations for the discrepancy between these results andthose of Mateo (1988), who found step IMFs for a different sample ofclusters in the Magellanic Clouds, are considered, and no obvious onesare found. The flat IMFs imply smaller mass-to-light ratios thanpreviously assumed and reinforce previous conclusions that the clustershave unbound halos. Flat IMFs also imply that stellar winds would havebeen very important in restructuring and expelling the gas from aprotocluster and that there would have been many supernovae early in thehistory of a supercluster.

Додај нови чланак


Линкови у сродству са темом

  • - Нема линкова -
Додај нови линк


Чланови следећих група \:


Посматрања и Астрометриски подаци

Сазвежђа:Златна риба
Ректацензија:05h07m08.54s
Deклинација:-68°58'22.7"
Apparent магнитуда:99.9

Каталог и designations:
Proper имена   (Edit)
NGC 2000.0NGC 1847

→ Захтевај још каталога од VizieR