Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 1553



Upload your image

DSS Images   Other Images

Related articles

A data-driven Bayesian approach for finding young stellar populations in early-type galaxies from their ultraviolet-optical spectra
Efficient predictive models and data analysis techniques for theanalysis of photometric and spectroscopic observations of galaxies arenot only desirable, but also required, in view of the overwhelmingquantities of data becoming available. We present the results of a novelapplication of Bayesian latent variable modelling techniques, where wehave formulated a data-driven algorithm that allows one to explore thestellar populations of a large sample of galaxies from their spectra,without the application of detailed physical models. Our only assumptionis that the galaxy spectrum can be expressed as a linear superpositionof a small number of independent factors, each a spectrum of a stellarsubpopulation that cannot be individually observed. A probabilisticlatent variable architecture that explicitly encodes this assumption isthen formulated, and a rigorous Bayesian methodology is employed forsolving the inverse modelling problem from the available data. Apowerful aspect of this method is that it formulates a density model ofthe spectra, based on which we can handle observational errors. Further,we can recover missing data both from the original set of spectra whichmight have incomplete spectral coverage of each galaxy, or frompreviously unseen spectra of the same kind.We apply this method to a sample of 21 ultraviolet-optical spectra ofwell-studied early-type galaxies, for which we also derive detailedphysical models of star formation history (i.e. age, metallicity andrelative mass fraction of the component stellar populations). We alsoapply it to synthetic spectra made up of two stellar populations,spanning a large range of parameters. We apply four different datamodels, starting from a formulation of principal component analysis(PCA), which has been widely used. We explore alternative factor models,relaxing the physically unrealistic assumption of Gaussian factors, aswell as constraining the possibility of negative flux values that areallowed in PCA, and show that other models perform equally well orbetter, while yielding more physically acceptable results. Inparticular, the more physically motivated assumptions of our rectifiedfactor analysis enable it to perform better than PCA, and to recoverphysically meaningful results.We find that our data-driven Bayesian modelling allows us to identifythose early-type galaxies that contain a significant stellar populationthat is <~1-Gyr old. This experiment also concludes that our sampleof early-type spectra showed no evidence of more than two major stellarpopulations differing significantly in age and metallicity. This methodwill help us to search for such young populations in a large ensemble ofspectra of early-type galaxies, without fitting detailed models, andthereby to study the underlying physical processes governing theformation and evolution of early-type galaxies, particularly thoseleading to the suppression of star formation in dense environments. Inparticular, this method would be a very useful tool for automaticallydiscovering various interesting subclasses of galaxies, for example,post-starburst or E+A galaxies.

Low-Mass X-Ray Binaries in Six Elliptical Galaxies: Connection to Globular Clusters
We present a systematic study of the low-mass X-ray binary (LMXB)populations of six elliptical galaxies, aimed at investigating thedetected LMXB-globular cluster (GC) connection. We utilize Chandraarchival data to identify X-ray point sources and HST archival datasupplemented by ground observations to identify 6173 GCs. Afterscreening and cross-matching, we associate 209 LMXBs with red GC (RGCs)and 76 LMXBs with blue GCs (BGCs), while we find no optical GCcounterpart for 258 LMXBs. This is the largest GC-LMXB sample studied sofar. We confirm previous reports suggesting that the fraction of GCsassociated with LMXBs is ~3 times larger in RGCs than in BGCs,indicating that metallicity is a primary factor in the GC LMXBformation. We find that GCs located near the galaxy center have a higherprobability of harboring LMXBs than those in the outskirts, suggestingthat there must be another parameter (in addition to metallicity)governing LMXB formation in GCs. This second parameter, dependent on thegalactocentric distance, may be a distance dependent encounter rate. Wefind no significant differences in the shape of X-ray luminosityfunction, LX/LV distribution, X-ray spectra amongRGC, BGC, and field LMXBs. The similarity of the X-ray spectra isinconsistent with the irradiation-induced stellar wind model prediction.The similarity of the X-ray luminosity functions (XLFs) of GC LMXBs andfield LMXBs indicates that there is no significant difference in thefraction of black hole binaries present. We cannot either prove orreject the hypothesis that all LMXBs were formed in GCs.

The Central Engines of 19 LINERs as Viewed by Chandra
Using archival Chandra observations of 19 LINERs, we explore the X-rayproperties of their inner kiloparsec to determine the origin of theirnuclear X-ray emission, to investigate the presence of an AGN, and toidentify the power source of the optical emission lines. The relativenumbers of LINER types in our sample are similar to those in opticalspectroscopic surveys. We find that diffuse, thermal emission is verycommon and is concentrated within the central few hundred parsecs. Theaverage spectra of the hot gas in spiral and elliptical galaxies arevery similar to those of normal galaxies. They can be fitted with athermal plasma (kT~0.5 keV) plus a power-law (photon index of 1.3-1.5)model. There are on average three detected point sources in their innerkiloparsec with 1037 ergss-1

Pseudobulges in the Disk Galaxies NGC 7690 and NGC 4593
We present Ks-band surface photometry of NGC 7690 (Hubbletype Sab) and NGC 4593 (SBb). We find that, in both galaxies, a majorpart of the ``bulge'' is as flat as the disk and has approximately thesame color as the inner disk. In other words, the ``bulges'' of thesegalaxies have disklike properties. We conclude that these are examplesof ``pseudobulges,'' that is, products of secular dynamical evolution.Nonaxisymmetries such as bars and oval disks transport disk gas towardthe center. There star formation builds dense stellar components thatlook like-and often are mistaken for-merger-built bulges, but that wereconstructed slowly out of disk material. These pseudobulges can mosteasily be recognized when, as in the present galaxies, they retaindisklike properties. NGC 7690 and NGC 4593 therefore contribute to thegrowing evidence that secular processes help to shape galaxies. NGC 4593contains a nuclear ring of dust that is morphologically similar tonuclear rings of star formation that are seen in many barred and ovalgalaxies. The nuclear dust ring is connected to nearly radial dust lanesin the galaxy's bar. Such dust lanes are a signature of gas inflow. Wesuggest that gas is currently accumulating in the dust ring andhypothesize that the gas ring will starburst in the future. Theobservations of NGC 4593 therefore suggest that major starburst eventsthat contribute to pseudobulge growth can be episodic.Based on observations made with the Anglo-Australian Telescope.Based in part on observations made with the NASA/ESA Hubble SpaceTelescope, obtained from the Data Archive at the Space Telescope ScienceInstitute (STScI). STScI is operated by the Association of Universitiesfor Research in Astronomy, Inc., under NASA contract NAS5-26555. Theobservations of NGC 7690 are associated with program IDs 7331 (NICMOS:M. Stiavelli) and 6359 (WFPC2: M. Stiavelli). The observations of NGC4593 are associated with program IDs 7330 (NICMOS: J. Mulchaey), and5479 (WFPC2: M. Malkan).

Accretion and Nuclear Activity of Quiescent Supermassive Black Holes. II. Optical Study and Interpretation
Our X-ray study of the nuclear activity in a new sample of six quiescentearly-type galaxies, as well as in a larger sample from the literature,confirmed (Paper I) that the Bondi accretion rate of diffuse hot gas isnot a good indicator of the SMBH X-ray luminosity. Here we suggest thata more reliable estimate of the accretion rate must include the gasreleased by the stellar population inside the sphere of influence of theSMBH, in addition to the Bondi inflow of hot gas across that surface. Weuse optical surface brightness profiles to estimate the mass-loss ratefrom stars in the nuclear region: we show that for our sample ofgalaxies it is an order of magnitude higher (~10-4 to10-3 Msolar yr-1) than the Bondi inflowrate of hot gas, as estimated from Chandra (Paper I). Only by takinginto account both sources of fuel can we constrain the true accretionrate, the accretion efficiency, and the power budget. Radiativelyefficient accretion is ruled out, for quiescent SMBHs. For typicalradiatively inefficient flows, the observed X-ray luminosities of theSMBHs imply accretion fractions ~1%-10% (i.e., ~90%-99% of the availablegas does not reach the SMBH) for at least five of our six targetgalaxies and most of the other galaxies with known SMBH masses. Wediscuss the conditions for mass conservation inside the sphere ofinfluence, so that the total gas injection is balanced by accretion plusoutflows. We show that a fraction of the total accretion power(mechanical plus radiative) would be sufficient to sustain aself-regulating, slow outflow that removes from the nuclear region allthe gas that does not sink into the BH (``BH feedback''). The rest ofthe accretion power may be carried out in a jet or advected. We alsodiscuss scenarios that would lead to an intermittent nuclear activity.

Accretion and Nuclear Activity of Quiescent Supermassive Black Holes. I. X-Ray Study
We have studied the nuclear activity in a sample of six quiescentearly-type galaxies, with new Chandra data and archival HST opticalimages. Their nuclear sources have X-ray luminosities~1038-1039 ergs s-1(LX/LEdd~10-8 to 10-7) andcolors or spectra consistent with accreting supermassive black holes(SMBHs), except for the nucleus of NGC 4486B, which is softer thantypical AGN spectra. In a few cases, the X-ray morphology of the nuclearsources shows hints of marginally extended structures, in addition tothe surrounding diffuse thermal emission from hot gas, which isdetectable on scales >~1 kpc. In one case (NGC 5845), a dusty diskmay partially obstruct our direct view of the SMBH. We have estimatedthe temperature and density of the hot interstellar medium, which is onemajor source of fuel for the accreting SMBH; typical central densitiesare ne~(0.02+/-0.01) cm-3. Assuming that the hotgas is captured by the SMBH at the Bondi rate, we show that the observedX-ray luminosities are too faint to be consistent with standard diskaccretion, but brighter than predicted by radiatively inefficientsolutions (e.g., advection-dominated accretion flows [ADAFs]). In total,there are ~20 galaxies for which SMBH mass, hot gas density, and nuclearX-ray luminosity are simultaneously known. In some cases, the nuclearsources are brighter than predicted by the ADAF model; in other cases,they are consistent or fainter. We discuss the apparent lack ofcorrelations between Bondi rate and X-ray luminosity and suggest that,in order to understand the observed distribution, we need to know twoadditional parameters: the amount of gas supplied by the stellarpopulation inside the accretion radius, and the fraction (possibly<<1) of the total gas available that is accreted by the SMBH. Weleave a detailed study of these issues to a subsequent paper.

A Chandra Survey of Early-Type Galaxies. I. Metal Enrichment in the Interstellar Medium
We present a Chandra study of the emission-weighted metal abundances in28 early-type galaxies, spanning ~3 orders of magnitude in X-rayluminosity (LX). We report constraints for Fe, O, Ne, Mg, Si,S, and Ni. We find no evidence of the very subsolar Fe abundance(ZFe) historically reported, confirming a trend in recentobservations of bright galaxies and groups, nor do we find anycorrelation between ZFe and luminosity. Excepting one case,the ISM is single-phase, indicating that multitemperature fits foundwith ASCA reflected temperature gradients that we resolve with Chandra.We find no evidence that ZFe (ISM) is substantially lowerthan the stellar metallicity estimated from simple stellar populationmodels. In general, these quantities are similar, which is inconsistentwith galactic wind models and recent hierarchical chemical enrichmentsimulations. Our abundance ratio constraints imply that 66%+/-11% of theISM Fe was produced in SNe Ia, similar to the solar neighborhood,indicating similar enrichment histories for elliptical galaxies and theMilky Way. Although these values are sensitive to the considerablesystematic uncertainty in the supernova yields, they are in agreementwith observations of more massive systems. This indicates considerablehomology in the enrichment process operating from cluster scales tolow-to-intermediate-LX galaxies. The data uniformly exhibitlow ZO/ZMg ratios, which have been reported insome clusters, groups, and galaxies. This is inconsistent with standardSN II metal yield calculations and may indicate an additional source ofenrichment, such as Population III hypernovae.

Scaling Mass Profiles around Elliptical Galaxies Observed with Chandra and XMM-Newton
We investigated the dynamical structure of 53 elliptical galaxies usingthe Chandra archival X-ray data. In X-ray-luminous galaxies, temperatureincreases with radius and gas density is systematically higher at theoptical outskirts, indicating the presence of a significant amount ofthe group-scale hot gas. In contrast, X-ray-dim galaxies show a flat ordeclining temperature profile against radius and the gas density isrelatively lower at the optical outskirts. Thus, it is found thatX-ray-bright and faint elliptical galaxies are clearly distinguished bythe temperature and gas density profile. The mass profile is well scaledby a virial radius r200 rather than an optical half-radiusre, is quite similar at (0.001-0.03)r200 betweenX-ray-luminous and dim galaxies, and smoothly connects to those profilesof clusters of galaxies. At the inner region of(0.001-0.01)r200 or (0.1-1)re, the mass profilewell traces a stellar mass with a constant mass-to-light ratio ofM/LB=3-10 Msolar/Lsolar. TheM/LB ratio of X-ray-bright galaxies rises up steeply beyond0.01r200 and thus requires a presence of massive dark matterhalo. From the deprojection analysis combined with the XMM-Newton data,we found that X-ray-dim galaxies NGC 3923, NGC 720, and IC 1459 alsohave a high M/LB ratio of 20-30 at 20 kpc, comparable to thatof X-ray-luminous galaxies. Therefore, dark matter is indicated to becommon in elliptical galaxies; their dark matter distribution, as wellas that of galaxy clusters, almost follows the NFW profile.

XMM-Newton Observation of Diffuse Gas and Low-Mass X-Ray Binaries in the Elliptical Galaxy NGC 4649 (M60)
We present an XMM-Newton X-ray observation of the X-ray-bright E2elliptical galaxy NGC 4649. In addition to bright diffuse emission, weresolve 158 discrete sources, ~50 of which are likely to be LMXBsassociated with NGC 4649. We find evidence for variability in threesources between this observation and a previous Chandra observation.Additionally, we detect five sources that were not detected with Chandradespite its better detection limit, suggesting that these sources havesince brightened. The total X-ray spectrum of the resolved sources iswell fit by a hard power law, while the diffuse spectrum requires a hardand a soft component, presumably due to the relatively soft diffuse gasand the harder unresolved sources. A deprojection of the diffuseemission revealed a radial temperature gradient that is hot in thecenter, drops to a minimum at about 20"-50" (1.6-4.1 kpc), and risesagain in the outer regions. The diffuse emission appears to require atwo-temperature model with heavy-element abundance ratios that differfrom the solar values. We have verified the existence of faint radialfeatures extending out from the core of NGC 4649 that had previouslybeen seen with Chandra. The fingers are morphologically similar toradial features seen in hydrodynamic simulations of cooling flows inelliptical galaxies, and although their other properties do not matchthe predictions of the particular simulations used, we conclude that theradial fingers might be due to convective motions of hot outflowing gasand cooler inflowing gas. We also find evidence for a longer, previouslyundetected filament that extends to the northeastern edge of NGC 4649.The diffuse gas in the region of the filament appears to have a lowertemperature and may also have a higher abundance as compared to nearbyregions. There also appears to be an excess of X-ray sources along thefilament, although the excess is not statistically significant. Weconclude that the filament may be the result of a tidal interaction,possibly with NGC 4647, although more work is necessary to verify thisconclusion.

Toward a clean sample of ultra-luminous X-ray sources
Context: .Observational follow-up programmes for the characterization ofultra-luminous X-ray sources (ULXs) require the construction of cleansamples of such sources in which the contamination byforeground/background sources is minimum. Aims: .We calculate thedegree of foreground/background contaminants among the ULX samplecandidates in a published catalogue and compare these computations withavailable spectroscopic identifications. Methods: .We usestatistics based on known densities of X-ray sources and AGN/QSOsselected in the optical. The analysis is done individually for eachparent galaxy. The existing identifications of the optical counterpartsare compiled from the literature. Results: .More than a half ofthe ULXs, within twice the distance of the major axis of the 25mag/arcsec2 isophote from RC3 nearby galaxies and with X-rayluminosities L_X[ 2-10 keV] ≥ 1039 erg/s, are expected tobe high redshift background QSOs. A list of 25 objects (clean sample)confirmed to be real ULXs or to have a low probability of beingcontaminant foreground/background objects is provided.

Nearby early-type galaxies with ionized gas. II. Line-strength indices for 18 additional galaxies
We previously presented a data-set of line-strength indices for 50early-type galaxies in the nearby Universe. The galaxy sample is biasedtoward galaxies showing emission lines, located in environmentscorresponding to a broad range of local galaxy densities, althoughpredominantly in low density environments. The present addendum enlargesthe above data-set of line-strength indices by analyzing 18 additionalearly-type galaxies (three galaxies, NGC 3607, NGC 5077 and NGC 5898were presented in the previous set). We measured 25 line-strengthindices, defined by the Lick IDS "standard" system (Trager et al. 1998,ApJS, 116, 1; Worthey & Ottaviani 1997, ApJS, 111, 377), for 7luminosity weighted apertures and 4 gradients of each galaxy. Thisaddendum presents the line-strength data-set and compares it with theavailable data in the literature.

The X-ray emission properties and the dichotomy in the central stellar cusp shapes of early-type galaxies
The Hubble Space Telescope has revealed a dichotomy in the centralsurface brightness profiles of early-type galaxies, which havesubsequently been grouped into two families: core, boxy, anisotropicsystems; and cuspy (`power-law'), discy, rotating ones. Here weinvestigate whether a dichotomy is also present in the X-ray propertiesof the two families. We consider both their total soft emission(LSX,tot), which is a measure of the galactic hot gascontent, and their nuclear hard emission (LHX,nuc), mostlycoming from Chandra observations, which is a measure of the nuclearactivity. At any optical luminosity, the highest LSX,totvalues are reached by core galaxies; this is explained by their beingthe central dominant galaxies of groups, subclusters or clusters, inmany of the logLSX,tot (ergs-1) >~ 41.5 cases.The highest LHX,nuc values, similar to those of classicalactive galactic nuclei (AGNs), in this sample are hosted only by core orintermediate galaxies; at low luminosity AGN levels, LHX,nucis independent of the central stellar profile shape. The presence ofoptical nuclei (also found by HST) is unrelated to the level ofLHX,nuc, even though the highest LHX,nuc are allassociated with optical nuclei. The implications of these findings forgalaxy evolution and accretion modalities at the present epoch arediscussed.

Structure and kinematics of edge-on galaxy discs - IV. The kinematics of the stellar discs
The stellar disc kinematics in a sample of 15 intermediate- to late-typeedge-on spiral galaxies are studied using a dynamical modellingtechnique. The sample covers a substantial range in maximum rotationvelocity and deprojected face-on surface brightness and contains sevenspirals with either a boxy- or peanut-shaped bulge. Dynamical models ofthe stellar discs are constructed using the disc structure from I-bandsurface photometry and rotation curves observed in the gas. Thedifferences in the line-of-sight stellar kinematics between the modelsand absorption-line spectroscopy are minimized using a least-squaresapproach. The modelling constrains the disc surface density and stellarradial velocity dispersion at a fiducial radius through the freeparameter (σz/σR)-1, whereσz/σR is the ratio of vertical andradial velocity dispersion and M/L is the disc mass-to-light ratio. For13 spirals a transparent model provides a good match to the meanline-of-sight stellar velocity dispersion. Models that include arealistic radiative transfer prescription confirm that the effect ofdust on the observable stellar kinematics is small at the observed slitpositions. We discuss possible sources of systematic error and concludethat most of these are likely to be small. The exception is the neglectof the dark halo gravity, which has probably caused an overestimate ofthe surface density in the case of low surface brightness discs.

A wide-field HI study of the NGC 1566 group
We report on neutral hydrogen observations of a ~ 5.5 × 5.5deg2 field around the NGC 1566 galaxy group with themultibeam narrow-band system on the 64-m Parkes Telescope. We detected13 HI sources in the field, including two galaxies not previously knownto be members of the group, bringing the total number of confirmedgalaxies in this group to 26. Each of the HI galaxies can be associatedwith an optically catalogued galaxy. No `intergalactic HI clouds' werefound to an HI mass limit of ~3.5 ×108Msolar. We have estimated the expected HIcontent of the late-type galaxies in this group and find that the totaldetected HI is consistent with our expectations. However, while noglobal HI deficiency is inferred for this group, two galaxies exhibitindividual HI deficiencies. Further observations are needed to determinethe gas removal mechanisms in these galaxies.

The Classification of Galaxies: Early History and Ongoing Developments
"You ask what is the use of classification, arrangement,systematization. I answer you; order and simplification are the firststeps toward the mastery of a subject the actual enemy is the unknown."

Ultraluminous X-Ray Sources in Nearby Galaxies from ROSAT High Resolution Imager Observations I. Data Analysis
X-ray observations have revealed in other galaxies a class ofextranuclear X-ray point sources with X-ray luminosities of1039-1041 ergs s-1, exceeding theEddington luminosity for stellar mass X-ray binaries. Theseultraluminous X-ray sources (ULXs) may be powered by intermediate-massblack holes of a few thousand Msolar or stellar mass blackholes with special radiation processes. In this paper, we present asurvey of ULXs in 313 nearby galaxies withD25>1' within 40 Mpc with 467 ROSAT HighResolution Imager (HRI) archival observations. The HRI observations arereduced with uniform procedures, refined by simulations that help definethe point source detection algorithm employed in this survey. A sampleof 562 extragalactic X-ray point sources withLX=1038-1043 ergs s-1 isextracted from 173 survey galaxies, including 106 ULX candidates withinthe D25 isophotes of 63 galaxies and 110 ULX candidatesbetween 1D25 and 2D25 of 64 galaxies, from which aclean sample of 109 ULXs is constructed to minimize the contaminationfrom foreground or background objects. The strong connection betweenULXs and star formation is confirmed based on the striking preference ofULXs to occur in late-type galaxies, especially in star-forming regionssuch as spiral arms. ULXs are variable on timescales over days to yearsand exhibit a variety of long term variability patterns. Theidentifications of ULXs in the clean sample show some ULXs identified assupernovae (remnants), H II regions/nebulae, or young massive stars instar-forming regions, and a few other ULXs identified as old globularclusters. In a subsequent paper, the statistic properties of the surveywill be studied to calculate the occurrence frequencies and luminosityfunctions for ULXs in different types of galaxies to shed light on thenature of these enigmatic sources.

The Diffuse Emission and a Variable Ultraluminous X-Ray Point Source in the Elliptical Galaxy NGC 3379
A Chandra observation of the intermediate-luminosity (MB=-20)elliptical galaxy NGC 3379 resolves 75% of the X-ray emission within thecentral 5 kpc into point sources. Spectral analysis of the remainingunresolved emission within the central 770 pc indicates that 90% of theemission probably arises from undetected point sources, while 10% arisesfrom thermal emission from kT=0.6 keV gas. Assuming a uniform densitydistribution in the central region of the galaxy gives a gas mass of5×105 Msolar. Such a small amount of gas canbe supplied by stellar mass loss in only 107 yr. Thus, thegas must be accreting into the central supermassive black hole at a verylow radiative efficiency as in the ADAF or RIAF models, or it is beingexpelled in a galactic wind driven by the same AGN feedback mechanism asthat observed in cluster cooling flows. If the gas is being expelled inan AGN-driven wind, then the ratio of mechanical to radio power of theAGN must be 104, which is comparable to that measured incluster cooling flows that have recently been perturbed by radiooutbursts. Only 8% of the detected point sources are coincident withglobular cluster positions, which is significantly less than that foundamong other elliptical galaxies observed by Chandra. The low specificfrequency of globular clusters and the small fraction of X-ray pointsources associated with globular clusters in NGC 3379 is more similar tothe properties of lenticular galaxies rather than elliptical galaxies.The brightest point source in NGC 3379 is located 360 pc from thecentral AGN with a peak luminosity of 3.5×1039 ergss-1, which places it in the class of ultraluminous X-raypoint sources (ULXs). Analysis of an archival ROSAT HRI observation ofNGC 3379 shows that this source was at a comparable luminosity 5 yrprior to the Chandra observation. The spectrum of the ULX is welldescribed by a power-law model with Γ=1.6+/-0.1 and galacticabsorption, similar to other ULXs observed by Chandra and XMM-Newton andto the low-hard state observed in Galactic black hole binaries. Duringthe Chandra observation, the source intensity smoothly varies by afactor of 2 with the suggestion of an 8-10 hr period. No changes inhardness ratio are detected as the intensity of the source varies. Whileperiodic behavior has recently been detected in several ULXs, all ofthese reside within spiral galaxies. The ULX in NGC 3379 is the onlyknown ULX in an elliptical galaxy with a smoothly varying light curvesuggestive of an eclipsing binary system.

A Fundamental Plane Relation for the X-Ray Gas in Normal Elliptical Galaxies
We report on the discovery of a new correlation between globalparameters of the hot interstellar gas in elliptical galaxies. Wereanalyze archival Chandra data for 30 normal early-type systems,removing the contributions of resolved and unresolved point sources toreveal the X-ray morphology of the hot gas. We determine the half-lightradius, RX, and the mean surface brightness, IX,from the gas surface brightness profiles. A spectral analysis determinesthe temperature, TX, of the gas within 3 optical effectiveradii. We find that the galaxies lie on an X-ray gas fundamental plane(XGFP) of the formTX~R0.28XI0.22X.This is close to, but distinct from, a simple luminosity-temperaturerelation. The intrinsic width of the XGFP is only 0.07 dex, nearlyidentical to that of the stellar (optical) fundamental plane (SFP). Thisis surprising since X-ray gas masses are typically ~10-2 ofthe stellar masses. We show that the XGFP is not a simple consequence ofthe virial theorem or hydrostatic equilibrium and that it is essentiallyindependent of the SFP. The XGFP thus represents a genuinely newconstraint on the hydrodynamical evolution of elliptical galaxies.

A Possible Detection of M31* with Chandra
Two independent sets of Chandra and HST images of the nuclear region ofM31 allow registration of X-ray and optical images to ~0.1". Thisregistration shows that none of the bright (~1037 ergss-1) X-ray sources near the nucleus is coincident with thecentral supermassive black hole, M31*. A 50 ks Chandra HRC image shows2.5 σ evidence for a faint (~1036 ergs s-1)discrete source that is consistent with the position of M31*. The Bondiradius of M31* is 0.9", making it one of the few supermassive blackholes with a resolvable accretion flow. This large radius and theprevious detections of diffuse X-ray-emitting gas in the nuclear regionmake M31* one of the most secure cases for a radiatively inefficientaccretion flow and place some of the most severe constraints on theradiative processes in such a flow.

Chandra Study of X-Ray Point Sources in the Early-Type Galaxy NGC 4552 (M89)
We present a Chandra ACIS study of the early-type galaxy NGC 4552. Wedetect 47 X-ray point sources, most of which are likely low-mass X-raybinaries (LMXBs), within four effective radii (Re). Thebrightest X-ray source coincides with the optical, UV, and radio centerof the galaxy and shows variability on >1 hr timescales, indicatingthe possible existence of a low-luminosity active galactic nucleus(AGN). The 46 off-center sources and the unresolved point sourcescontribute about 29% and 20% to the total luminosity of the galaxy,respectively. We find that after correcting for the incompleteness atthe low-luminosity end, the observed cumulative X-ray luminosityfunction (XLF) of the off-center sources is best fitted by a brokenpower-law model with a break atLb=4.4+2.0-1.4×1038ergs s-1. We identified 210 globular cluster (GC) candidatesin a HST WFPC2 optical image of the galaxy's central region. Of the 25off-center LMXBs that fall within the WFPC2 field of view, 10 sourcesare coincident with a GC. Thus, the fraction of the GCs hosting brightLMXBs and the fraction of the LMXBs associated with GCs are 4.8% and40%, respectively. In the V and I bands, the GCs hosting bright LMXBsare typically 1-2 mag brighter than the GCs with no detected LMXBs.There are about 1.9+/-0.4 times as many LMXBs in the red, metal-rich GCsas there are in the blue, metal-poor ones. We find no obvious differencebetween the luminosity distributions of LMXBs in GCs and in the field,but the cumulative spectrum of the LMXBs in GCs tends to be softer thanthat of the LMXBs in field. We detected three X-ray sources that haveisotropic luminosities larger than 1039 ergs s-1.Only one of these is located in the joint Chandra-HST field and is foundto be associated with a GC. By studying its ACIS spectra we infer thatthe this may be a candidate black hole system with a mass of 15-135Msolar. One of the other sources with a luminosity brighterthan 1039 ergs s-1 reveals temporal variations inbrightness on timescales greater than 1 hr.

The Birthplace of Low-Mass X-Ray Binaries: Field Versus Globular Cluster Populations
Recent Chandra studies of low-mass X-ray binaries (LMXBs) withinearly-type galaxies have found that LMXBs are commonly located withinglobular clusters of the galaxies. However, whether all LMXBs are formedwithin globular clusters has remained an open question. If all LMXBsformed within globular clusters, the summed X-ray luminosity of theLMXBs in a galaxy should be directly proportional to the number ofglobular clusters in the galaxy regardless of where the LMXBs currentlyreside. We have compared these two quantities over the same angular areafor a sample of 12 elliptical and S0 galaxies observed with Chandra andfound that the correlation between the two quantities is weaker thanexpected if all LMXBs formed within globular clusters. This indicatesthat a significant number of the LMXBs were formed in the field andnaturally accounts for the spread in field-to-cluster fractions of LMXBsfrom galaxy to galaxy. We also find that the ``pollution'' of globularcluster LMXBs into the field has been minimal within ellipticalgalaxies, but there is evidence that roughly half of the LMXBsoriginally in the globular clusters of S0 galaxies in our sample haveescaped into the field. This is likely due to higher globular clusterdisruption rates in S0s, resulting from stronger gravitational shockscaused by the passage of globular clusters through the disks of S0galaxies that are absent in elliptical galaxies.

Nuclear Accretion in Galaxies of the Local Universe: Clues from Chandra Observations
In order to find an explanation for the radiative quiescence ofsupermassive black holes in the local universe, the most accurateestimates for a sample of nearby galaxies are collected for the mass ofa central black hole (MBH), the nuclear X-ray luminosityLX,nuc, and the circumnuclear hot gas density andtemperature, by using Chandra data. The nuclear X-ray luminosityLX,nuc varies by ~3 orders of magnitude and does not show arelationship with MBH or with the Bondi mass accretion rateM˙B LX,nuc is always much lower than expectedif M˙B ends in a standard accretion disk with highradiative efficiency (this instead can be the case of the active nucleusof Cen A). Radiatively inefficient accretion as in the standardadvection-dominated accretion flow (ADAF) modeling may explain the lowluminosities of a few cases; for others, the predicted luminosity isstill too high, and, in terms of Eddington-scaled quantities, it isincreasingly higher than that observed for increasingM˙B. Variants of the simple radiatively inefficientscenario including outflow and convection may reproduce the low emissionlevels observed, since the amount of matter actually accreted is reducedconsiderably. However, the most promising scenario includes feedbackfrom accretion on the surrounding gas; this has the important advantagesof naturally explaining the observed lack of relationship amongLX,nuc, MBH, and M˙B, and evadingthe problem of the fate of the material accumulating in the centralgalactic regions over cosmological times.

On the Nature of X-Ray Sources in Early-Type Galaxies
We show that the observed relationship between the fraction of low-massX-ray binaries (LMXBs) found in globular clusters (GCs) and theGC-specific frequency for early-type galaxies is consistent with an LMXBformation model in which the field population of LMXBs is formed in situvia primordial binary formation. The suggestion that a significantfraction of the field LMXB population in early-type galaxies was formedin GCs is not required by the data. Finally, we discuss observationalstudies that will test this model more thoroughly.

The Epochs of Early-Type Galaxy Formation as a Function of Environment
The aim of this paper is to set constraints on the epochs of early-typegalaxy formation through the ``archaeology'' of the stellar populationsin local galaxies. Using our models of absorption-line indices thataccount for variable abundance ratios, we derive ages, totalmetallicities, and element ratios of 124 early-type galaxies in high-and low-density environments. The data are analyzed by comparison withmock galaxy samples created through Monte Carlo simulations taking thetypical average observational errors into account, in order to eliminateartifacts caused by correlated errors. We find that all threeparameters, age, metallicity, and α/Fe ratio, are correlated withvelocity dispersion. We show that these results are robust againstrecent revisions of the local abundance pattern at high metallicities.To recover the observed scatter we need to assume an intrinsic scatterof about 20% in age, 0.08 dex in [Z/H], and 0.05 dex in [α/Fe].All low-mass objects withM*<~1010Msolar (σ<~130kms-1) show evidence for the presence of intermediate-agestellar populations with low α/Fe ratios. About 20% of theintermediate-mass objects with1010<~M*/Msolar<~1011[110<~σ/(kms-1)<~230 both elliptical andlenticular galaxies] must have either a young subpopulation or a bluehorizontal branch. On the basis of the above relationships, valid forthe bulk of the sample, we show that the Mg-σ relation is mainlydriven by metallicity, with similar contributions from the α/Feratio (23%) and age (17%). We further find evidence for an influence ofthe environment on the stellar population properties. Massive early-typegalaxies in low-density environments seem on average ~2 Gyr younger andslightly (~0.05-0.1 dex) more metal-rich than their counterparts inhigh-density environments. No offsets in the α/Fe ratios areinstead detected. With the aid of a simple chemical evolution model, wetranslate the derived ages and α/Fe ratios into star formationhistories. We show that most star formation activity in early-typegalaxies is expected to have happened between redshifts ~3 and 5 inhigh-density environments and between redshifts 1 and 2 in low-densityenvironments. We conclude that at least 50% of the total stellar massdensity must have already formed at z~1, in good agreement withobservational estimates of the total stellar mass density as a functionof redshift. Our results suggest that significant mass growth in theearly-type galaxy population below z~1 must be restricted to lessmassive objects, and a significant increase of the stellar mass densitybetween redshifts 1 and 2 should be present, caused mainly by the fieldgalaxy population. The results of this paper further imply the presenceof vigorous star formation episodes in massive objects at z~2-5 andevolved elliptical galaxies around z~1, both observationally identifiedas SCUBA galaxies and extremely red objects, respectively.

BeppoSAX/PDS serendipitous detections at high galactic latitudes
At a flux limit of 10-11 erg cm-2 s-1in the 20-100 keV band, the PDS instrument on-board BeppoSAX offers theopportunity to study the extragalactic sky with an unprecedentedsensitivity. In this work we report on the results of a search in theBeppoSAX archive for serendipitous high energy sources at high galacticlatitudes (\vert b \vert≥13°). We have defined a set of twelveregions in which the PDS/MECS cross-calibration constant is higher thanthe nominal value. We attribute this mismatch to the presence of aserendipitous source in the PDS field of view. In four cases the likelyhigh energy emitter is also present in the MECS field of view. In thesecases, we have performed a broad band spectral analysis (1.5-100 keV) tounderstand the source spectral behaviour and compare it with previousBeppoSAX observations when available. In eight cases the identificationof the source likely to provide the PDS spectrum is based on indirectevidence (extrapolation to lower energies and/or comparison withprevious observations). This approach led to the discovery of six newhard X-ray emitting objects (PKS 2356-611, 2MASX J14585116-1652223, NGC1566, NGC 7319, PKS 0101-649 and ESO 025-G002) and to the presentationthe PDS spectrum of NGC 3227 for the first time. In the remaining fivecases we provide extra BeppoSAX observations that can be compared withmeasurements already published and/or in the archive.

Nearby early-type galaxies with ionized gas. I. Line-strength indices of the underlying stellar population
With the aim of building a data-set of spectral properties of wellstudied early-type galaxies showing emission lines, we presentintermediate resolution spectra of 50 galaxies in the nearby Universe.The sample, which covers several of the E and S0 morphologicalsub-classes, is biased toward objects that might be expected to haveongoing and recent star formation, at least in small amounts, because ofthe presence of the emission lines. The emission is expected to comefrom the combination of active galactic nuclei and star formationregions within the galaxies. Sample galaxies are located in environmentscorresponding to a broad range of local galaxy densities, althoughpredominantly in low density environments. Our long-slit spectra coverthe 3700-7250 Å wavelength range with a spectral resolution of≈7.6 Å at 5550 Å. The specific aim of this paper, and ourfirst step in the investigation, is to map the underlying galaxy stellarpopulation by measuring, along the slit positioned along the galaxymajor axis, line-strength indices at several, homogeneousgalacto-centric distances. For each object we extracted 7luminosity-weighted apertures (with radii 1.5´´,2.5´´, 10´´, r_e/10, r_e/8, r_e/4 and r_e/2)corrected for the galaxy ellipticity and 4 gradients (0 ≤ r ≤r_e/16, r_e/16 ≤ r ≤ r_e/8, r_e/8 ≤ r ≤ r_e/4 and r_e/4≤ r ≤ r_e/2). For each aperture and gradient we measured 25line-strength indices: 21 of the set defined by the Lick-IDS“standard” system (Trager et al. [CITE], ApJS, 116, 1) and 4introduced by Worthey & Ottaviani ([CITE], ApJS, 111, 377).Line-strength indices have been transformed to the Lick-IDS system.Indices derived then include Hβ, Mg1, Mg2, Mgb, MgFe, Fe5270,Fe5335 commonly used in classic index-index diagrams. The paperintroduces the sample, presents the observations, describes the datareduction procedures, the extraction of apertures and gradients, thedetermination and correction of the line-strength indices, the procedureadopted to transform them into the Lick-IDS System and the proceduresadopted for the emission correction. We finally discuss the comparisonsbetween our dataset and line-strength indices available in theliterature. A significant fraction, about 60%, of galaxies in thepresent sample has one previous measurement in the Lick-IDS system butbasically restricted within the r_e/8 region. Line-strength measuresobtained both from apertures and gradients outside this area and withinthe r_e/8 region, with the present radial mapping, are completely new.Full appendix and Figs. 8 to 13 are only available in electronic form athttp://www.edpsciences.org Full Tables 6, 7, 9 and 10 are only availableat the CDS via anonymous ftp to cdsarc.u-strasbg.fr ( orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/433/497 Based onobservations obtained at the European Southern Observatory, La Silla,Chile (Programs Nr. 60.A-0647 and 61.A-0406).

A catalogue of ultraluminous X-ray sources in external galaxies
We present a catalogue of ultraluminous X-ray sources (ULXs) in externalgalaxies. The aim of this catalogue is to provide easy access to theproperties of ULXs, their possible counterparts at other wavelengths(optical, IR, and radio), and their host galaxies. The cataloguecontains 229 ULXs reported in the literature until April 2004. Most ULXsare stellar-mass-black hole X-ray binaries, but it is not excluded thatsome ULXs could be intermediate-mass black holes. A small fraction ofthe candidate ULXs may be background Active Galactic Nuclei (AGN) andSupernova Remnants (SNRs). ULXs with luminosity above 1040ergs s-1 are found in both starburst galaxies and in thehalos of early-type galaxies.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/429/1125

Star formation history in early-type galaxies - I. The line absorption indices diagnostics
To unravel the formation mechanism and the evolutionary history ofelliptical galaxies (EGs) is one of the goals of modern astrophysics. Ina simplified picture of the issue, the question to be answered iswhether they have formed by hierarchical merging of pre-existingsubstructures (maybe disc galaxies) made of stars and gas, with eachmerging event probably accompanied by strong star formation, orconversely, whether they originated from the early aggregation of lumpsof gas turned into stars in the remote past via a burst-like episodeever since followed by quiescence so as to mimic a sort of monolithicprocess. Even if the two alternatives seem to oppose each other,actually they may both contribute to shaping the final properties of EGsas seen today. Are there distinct signatures of the underlying dominantprocess in the observational data? To this aim we have examined the lineabsorption indices on the Lick system of the normal, field EGs of Tragerand the interacting EGs (pair- and shell-objects) of Longhetti et al.The data show that both normal, field and interacting galaxies have thesame scattered but smooth distribution in the Hβ versus [MgFe]plane even if the interacting ones show a more pronounced tail towardhigh Hβ values. This may suggest that a common physical cause is atthe origin of their distribution. There are two straightforwardinterpretations of increasing complexity. (i) EGs span true large rangesof ages and metallicities. A young age is the signature of theaggregation mechanism, each event accompanied by metal enrichment. Thissimple scheme cannot, however, explain other spectro-photometricproperties of EGs and has to be discarded. (ii) The bulk population ofstars is old but subsequent episodes of star formation scatter the EGsin the diagnostic planes. However, this scheme would predict anoutstanding clump at low Hβ values, contrary to what is observed.The model can be cured by supposing that the primary star formationactivity lasted for a significant fraction of the Hubble time (5<=T<= 13 Gyr) accompanied by global metal enrichment. The`younger' galaxies are more metal-rich. The later burst of starformation should be small otherwise too many high-Hβ objects wouldbe observed. Therefore, the distribution of normal, pair- andshell-galaxies in the Hβ versus [MgFe] plane is due to global metalenrichment. Even though the above schemes provide a formal explanation,they seem to be too demanding because of the many ad hoc ingredientsthat have to be introduced. Furthermore, they neglect theobservationally grounded hint that the stellar content of EGs is likelyto be enhanced in α-elements with [α/Fe] ranging from 0.1 to0.4 dex. Here we propose a new scheme, in which the bulk dispersion ofgalaxies in the Hβ versus [MgFe] plane is caused by a differentmean degree of enhancement. In this model, neither the large age rangesnor the universal enrichment law for the old component are required andthe observed distribution along Hβ is naturally recovered.Furthermore, later bursts of stellar activity are a rare event,involving only those galaxies with very high Hβ (roughly >2.5).Finally, simulations of the scatter in broad-band colours of EGs seem toconfirm that the bulk stars have formed in the remote past, and thatmergers and companion star formation in a recent past are not likely,unless the intensity of the secondary activity is very small.

XMM-Newton and Chandra observations of three X-ray-faint early-type galaxies
We present XMM-Newton observations of three X-ray-underluminouselliptical galaxies, NGC 3585, 4494 and 5322. All three galaxies haverelatively large optical luminosities (logLB= 10.35-10.67Lsolar) but have X-ray luminosities consistent with emissionfrom discrete sources only. In conjunction with a Chandra observation ofNGC 3585, we analyse the XMM-Newton data and show that the threegalaxies are dominated by discrete source emission, but do possess someX-ray-emitting gas. The gas is at relatively low temperatures, kT~=0.25-0.44 keV. All three galaxies show evidence of recent dynamicaldisturbance and formation through mergers, including kinematicallydistinct cores, young stellar ages and embedded stellar discs. Thisleads us to conclude that the galaxies formed relatively recently andhave yet to build up large X-ray haloes. They are likely to be in adevelopmental phase where the X-ray gas has a very low density, makingit undetectable outside the galaxy core. However, if the gas is aproduct of stellar mass loss, as seems most probable, we would expect toobserve supersolar metal abundances. While abundance is not wellconstrained by the data, we find best-fitting abundances <0.1Zsolar for single-temperature models, and it seems unlikelythat we could underestimate the metallicity by such a large factor.

Low-mass X-ray binaries as a stellar mass indicator for the host galaxy
Using results of Chandra observations of old stellar systems in 11nearby galaxies of various morphological types and the census oflow-mass X-ray binaries (LMXBs) in the Milky Way, we study thepopulation of LMXBs and their relation to the mass of the host galaxy.We show that the azimuthally averaged spatial distributions of thenumber of LMXBs and, in the majority of cases, of their collectiveluminosity closely follow that of the near-infrared light. Consideringgalaxies as a whole, we find that, in a broad stellar mass range,log(M*) ~ 9-11.5, the total number of LMXBs and theircombined luminosity are proportional to the stellar mass of the hostgalaxy. Within the accuracy of the light-to-mass conversion, we cannotrule out the possibility of a weak dependence of the X/M*ratio on morphological type. However, the effect of such a dependence,if any, does not exceed a factor of ~1.5-2.The luminosity distributions of LMXBs observed in different galaxies aresimilar to each other and, with the possible exception of NGC 1553, areconsistent with the average luminosity function derived from all data.The average X-ray luminosity function of LMXBs in nearby galaxies has acomplex shape and is significantly different from that of high-massX-ray binaries (HMXBs). It follows a power law with a differential slopeof ~1 at low luminosities, gradually steepens at log(LX)>~ 37.0-37.5 and has a rather abrupt cut-off at log(LX) ~39.0-39.5. This value of the cut-off luminosity is significantly, by anorder of magnitude, lower than found for HMXBs.

Submit a new article

Related links

Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:04h16m10.30s
Aparent dimensions:5.888′ × 3.89′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 1553

→ Request more catalogs and designations from VizieR