Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 1546



Upload your image

DSS Images   Other Images

Related articles

The evolution of actively star-forming galaxies in the mid-infrared
In this paper we analyze the evolution of actively star-forming galaxiesin the mid-infrared (MIR). This spectral region, characterized bycontinuum emission by hot dust and by the presence of strong emissionfeatures generally ascribed to polycyclic aromatic hydrocarbon (PAH)molecules, is the most strongly affected by the heating processesassociated with star formation and/or active galactic nuclei (AGNs).Following the detailed observational characterization of galaxies in theMIR by the Infrared Space Observatory (ISO), we have updated themodelling of this spectral region in our spectrophotometric modelGRASIL. In the diffuse component we have updated the treatment of PAHsaccording to the model by Li & Draine. As for the dense phase of theinterstellar medium associated with the star-forming regions, themolecular clouds, we strongly decrease the abundance of PAHs as comparedto that in the cirrus, based on the observational evidence of the lackor weakness of PAH bands close to the newly formed stars, possibly dueto the destruction of the molecules in strong ultraviolet fields. Therobustness of the model is checked by fitting near-infrared to radiobroad-band spectra and the corresponding detailed MIR spectra of a largesample of galaxies, at once. With this model, we have analyzed thelarger sample of actively star-forming galaxies by Dale et al. We showthat the observed trends of galaxies in the ISO-IRAS-radio colour-colourplots can be interpreted in terms of the different evolutionary phasesof star formation activity, and the consequent different dominance inthe spectral energy distribution of the diffuse or dense phase of theISM. We find that the observed colours indicate a surprising homogeneityof the starburst phenomenon, allowing only a limited variation of themost important physical parameters, such as the optical depth of themolecular clouds, the time-scale of the escape of young stars from theirfor mation sites, and the gas consumption time-scale. In this paper wedo not attempt to reproduce the far-infrared coolest region in thecolour-colour plots, as we concentrate on models meant to reproduceactive star-forming galaxies, but we discuss possible requirements of amore complex modelling for the coldest objects.

A wide-field HI study of the NGC 1566 group
We report on neutral hydrogen observations of a ~ 5.5 × 5.5deg2 field around the NGC 1566 galaxy group with themultibeam narrow-band system on the 64-m Parkes Telescope. We detected13 HI sources in the field, including two galaxies not previously knownto be members of the group, bringing the total number of confirmedgalaxies in this group to 26. Each of the HI galaxies can be associatedwith an optically catalogued galaxy. No `intergalactic HI clouds' werefound to an HI mass limit of ~3.5 ×108Msolar. We have estimated the expected HIcontent of the late-type galaxies in this group and find that the totaldetected HI is consistent with our expectations. However, while noglobal HI deficiency is inferred for this group, two galaxies exhibitindividual HI deficiencies. Further observations are needed to determinethe gas removal mechanisms in these galaxies.

Simulating the Spitzer Mid-Infrared Color-Color Diagrams
We use a simple parameterization of the mid-IR spectra of a wide rangeof galaxy types in order to predict their distribution in the InfraredArray Camera (IRAC) 3.6, 4.5, 5.8, and 8.0 μm and MultibandPhotometer for Spitzer 24 μm color-color diagrams. We distinguishthree basic spectral types by the energetically dominant component inthe 3-12 μm regime: stellar-dominated, polycyclic aromatichydrocarbon (PAH)-dominated, and continuum-dominated. We use a Markovchain Monte Carlo approach to arrive at a more systematic and robustrepresentation of the mid-IR spectra of galaxies than do moretraditional approaches. We find that IRAC color-color plots are wellsuited to distinguishing the above spectral types, while the addition of24 μm data allows us to suggest practical three-color cuts thatpreferentially select higher redshift sources of a specific type. Wecompare our simulations with the color-color plot obtained by theSpitzer First Look Survey and find reasonable agreement. Lastly, wediscuss other applications as well as future directions for this work.

Classification of Spectra from the Infrared Space Observatory PHT-S Database
We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

Infrared Emission of Normal Galaxies from 2.5 to 12 Micron: Infrared Space Observatory Spectra, Near-Infrared Continuum, and Mid-Infrared Emission Features
We present ISOPHOT spectra of the regions 2.5-4.9 μm and 5.8-11.6μm for a sample of 45 disk galaxies from the US Infrared SpaceObservatory Key Project on Normal Galaxies. The galaxies were selectedto span the range in global properties of normal, star-forming diskgalaxies in the local universe. The spectra can be decomposed into threespectral components: (1) continuum emission from stellar photospheres,which dominates the near-infrared (NIR; 2.5-4.9 μm) spectral region;(2) a weak NIR excess continuum, which has a color temperature of~103 K, carries a luminosity of a few percent of the totalfar-infrared (FIR) dust luminosity LFIR and most likelyarises from the interstellar medium (ISM); and (3) the well-known broademission features at 6.2, 7.7, 8.6, and 11.3 μm, which are generallyattributed to aromatic carbon particles. These aromatic features inemission (AFEs) dominate the mid-infrared (MIR; 5.8-11.6 μm) part ofthe spectrum and resemble the so-called type A spectra observed in manynonstellar sources and the diffuse ISM in our own Galaxy. The fewnotable exceptions include NGC 4418, where a dust continuum replaces theAFEs in MIR, and NGC 1569, where the AFEs are weak and the strongestemission feature is [S IV] 10.51 μm. The relative strengths of theAFEs vary by 15%-25% among the galaxies. However, little correlation isseen between these variations and either IRAS 60 μm/100 μm fluxdensity ratio R(60/100) or the FIR/blue luminosity ratioLFIR/LB, two widely used indicators of the currentstar formation activity, suggesting that the observed variations are nota consequence of the radiation field differences among the galaxies. Wedemonstrate that the NIR excess continuum and AFE emission arecorrelated, suggesting that they are produced by similar mechanisms andsimilar (or the same) material. On the other hand, as the current starformation activity increases, the overall strengths of the AFEs and theNIR excess continuum drop significantly with respect to that of the FIRemission from large dust grains. In particular, the summed luminosity ofthe AFEs falls from ~0.2 LFIR for the most ``IR-quiescent''galaxies to ~0.1 LFIR for the most ``IR-active'' galaxies.This is likely a consequence of the preferential destruction in intenseradiation fields of the small carriers responsible for the NIR/AFEemission.Based on observations with ISO, an ESA project with instruments fundedby ESA member states (especially the PI countries, France, Germany, theNetherlands, and the United Kingdom) and with the participation of ISASand NASA.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr ( or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium
The most important cooling lines of the neutral interstellar medium(ISM) lie in the far-infrared (FIR). We present measurements by theInfrared Space Observatory Long Wavelength Spectrometer of seven linesfrom neutral and ionized ISM of 60 normal, star-forming galaxies. Thegalaxy sample spans a range in properties such as morphology, FIR colors(indicating dust temperature), and FIR/blue ratios (indicating starformation activity and optical depth). In two-thirds of the galaxies inthis sample, the [C II] line flux is proportional to FIR dust continuum.The other one-third show a smooth decline inL[CII]/LFIR with increasing Fν(60μm)/Fν(100 μm) and LFIR/LB,spanning a range of a factor of more than 50. Two galaxies at the warmand active extreme of the range haveL[CII]/LFIR<2×10-4 (3 σupper limit). This is due to increased positive grain charge in thewarmer and more active galaxies, which leads to less efficient heatingby photoelectrons from dust grains. The ratio of the two principalphotodissociation region (PDR) cooling linesL[OI]/L[CII] shows a tight correlation withFν(60 μm)/Fν(100 μm), indicating thatboth gas and dust temperatures increase together. We derive atheoretical scaling between [N II] (122 μm) and [C II] from ionizedgas and use it to separate [C II] emission from neutral PDRs and ionizedgas. Comparison of PDR models of Kaufman et al. with observed ratios of(1) L[OI]/L[CII] and(L[CII]+L[OI])/LFIR and (2)L[OI]/LFIR and Fν(60μm)/Fν(100 μm) yields far-UV flux G0 andgas density n. The G0 and n values estimated from the twomethods agree to better than a factor of 2 and 1.5, respectively, inmore than half the sources. The derived G0 and n correlatewith each other, and G0 increases with n asG0~nα, where α~1.4 . We interpret thiscorrelation as arising from Strömgren sphere scalings if much ofthe line and continuum luminosity arises near star-forming regions. Thehigh values of PDR surface temperature (270-900 K) and pressure(6×104-1.5×107 K cm-3)derived also support the view that a significant part of grain and gasheating in the galaxies occurs very close to star-forming regions. Thedifferences in G0 and n from galaxy to galaxy may be due todifferences in the physical properties of the star-forming clouds.Galaxies with higher G0 and n have larger and/or denserstar-forming clouds.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

ISO Mid-Infrared Observations of Normal Star-Forming Galaxies: The Key Project Sample
We present mid-infrared maps and preliminary analysis for 61 galaxiesobserved with the ISOCAM instrument aboard the Infrared SpaceObservatory. Many of the general features of galaxies observed atoptical wavelengths-spiral arms, disks, rings, and bright knots ofemission-are also seen in the mid-infrared, except the prominent opticalbulges are absent at 6.75 and 15 μm. In addition, the maps are quitesimilar at 6.75 and 15 μm, except for a few cases where a centralstarburst leads to lower Iν(6.75μm)/Iν(15 μm) ratios in the inner region. We alsopresent infrared flux densities and mid-infrared sizes for thesegalaxies. The mid-infrared color Iν(6.75μm)/Iν(15 μm) shows a distinct trend with thefar-infrared color Iν(60 μm)/Iν(100μm). The quiescent galaxies in our sample [Iν(60μm)/Iν(100 μm)<~0.6] show Iν(6.75μm)/Iν(15 μm) near unity, whereas this ratio dropssignificantly for galaxies with higher global heating intensity levels.Azimuthally averaged surface brightness profiles indicate the extent towhich the mid-infrared flux is centrally concentrated, and provideinformation on the radial dependence of mid-infrared colors. Thegalaxies are mostly well resolved in these maps: almost half of themhave <10% of their flux in the central resolution element. Acomparison of optical and mid-infrared isophotal profiles indicates thatthe flux at 4400 Å near the optical outskirts of the galaxies isapproximately 8 (7) times that at 6.75 μm (15 μm), comparable toobservations of the diffuse quiescent regions of the Milky Way. Thispaper is based on observations with the Infrared Space Observatory(ISO). ISO is an ESA project with instruments funded by ESA memberstates (especially the PI countries: France, Germany, The Netherlands,and the United Kingdom) and with the participation of ISAS and NASA.

Radio observations of nearby moderately luminous IRAS galaxies.
Not Available

Total magnitude, radius, colour indices, colour gradients and photometric type of galaxies
We present a catalogue of aperture photometry of galaxies, in UBVRI,assembled from three different origins: (i) an update of the catalogueof Buta et al. (1995) (ii) published photometric profiles and (iii)aperture photometry performed on CCD images. We explored different setsof growth curves to fit these data: (i) The Sersic law, (ii) The net ofgrowth curves used for the preparation of the RC3 and (iii) A linearinterpolation between the de Vaucouleurs (r(1/4) ) and exponential laws.Finally we adopted the latter solution. Fitting these growth curves, wederive (1) the total magnitude, (2) the effective radius, (3) the colourindices and (4) gradients and (5) the photometric type of 5169 galaxies.The photometric type is defined to statistically match the revisedmorphologic type and parametrizes the shape of the growth curve. It iscoded from -9, for very concentrated galaxies, to +10, for diffusegalaxies. Based in part on observations collected at the Haute-ProvenceObservatory.

Cool dense gas in early-type galaxies
CO observations have shown that many lenticular and elliptical galaxiescontain significant amounts of cool dense gas. This review summarizesthe observational results related to the neutral gas phase and presentsa systematic comparison with other interstellar and stellar data. Thediscovery of very dense molecular gas in the nuclear regions ofearly-type galaxies, the possible existence of a dust component neitherseen optically nor in CO, internal inconsistencies of cooling flowscenarios, the origin of the cool gas, the presence of massive stars,aspects of galaxy evolution, and possibilities for future research arediscussed in the light of the new data.

Molecular Gas, Morphology, and Seyfert Galaxy Activity
We probe the cause of the elevated star formation in host galaxies ofSeyfert 2 nuclei compared with Seyfert 1 hosts and with field galaxies.12CO (1--0) observations of a large sample of Seyfert galaxies indicateno significant difference in the total amount of molecular gas as afunction of the Seyfert nuclear type, nor are Seyfert galaxiessignificantly different in this regard from a sample of field galaxiesonce selection effects are accounted for. Therefore, the total amount ofmolecular gas is not responsible for the enhanced star-forming activityin Seyfert 2 hosts. To probe how this gas is being converted moreefficiently into stars in Seyfert 2 hosts than in the other galaxies, weinvestigate the occurrence of bars, interactions, and distortedmorphologies among Seyfert galaxies. We find a significantly higher rateof asymmetric morphologies for Seyfert 2 galaxies with respect toSeyfert 1 galaxies and field galaxies. Relative to field galaxies, theeffect is at a greater than 99.9% confidence level. The presence ofasymmetric morphologies in individual Seyfert galaxies is correlatedwith their tendency to exhibit enhanced star-forming activity. Theseresults suggest that asymmetric morphologies are an important cause forthe link between Seyfert type and star-forming activity: bars anddistortions in Seyfert 2 hosts are likely both to enhance star-formingactivity and to funnel gas into the nuclear region, thus obscuring andpossibly contributing to the feeding of the active nucleus.

K'-Band Dust Albedo from Observations of Galaxies
A relationship between the dust albedos in the V-band and the K'-bandcan be obtained by analyzing the relative strengths of dust attenuationin the respective bands in dusty late-type galaxies (Witt et al. 1994,ApJ 427, 227). We secured V- and K'-band images of three galaxies whichexhibit a highly symmetric light distribution in K' but displayexceptionally asymmetric dust attenuation in V: NGC 1546 (Sc(s) III),NGC 1947 (SO_3(0)pec), and NGC 3521 (Sbc(s) II). Differences inV-surface brightness and in V-K' color between diagonally symmetriclocations on the galaxy images were analyzed, using galactic radiativetransfer models which incorporate both absorption and multiplescattering (Witt, Thronson, & Capuano 1992, ApJ 393, 611). Assuminga V-albedo for the dust a_v=0.6, the resulting K'-albedo values for thethree galaxies are 0.63, 0.66, and 0.53, respectively. This confirmsearlier results, showing the K'-band dust albedo to be well in excess ofthe value of 0.2 predicted by the MNR model. Thus, the upper limit ofthe size distribution of grains must extend to at least 1mu m.

The IRAS Bright Galaxy Survey - Part II: Extension to Southern Declinations (delta ~< -30), and Low Galactic Latitudes (f<|b|
Complete IRAS Observations and redshifts are reported for all sourcesidentified in the IRAS Bright Galaxy Survey-Part II (hereafter referredto as BGS_2_). Source positions, radial velocities, optical magnitudes,and total flux densities, peak flux densities, and spatial extents at12, 25, and 100 ,microns are reported for 288 sources having 60 micronflux densities > 5.24 Jy, the completeness limit of the originalBright Galaxy Survey [Soifer et al., AJ, 98,766(1989)], hereafterreferred to as BGS_1_. These new data represent the extension of theIRAS Bright Galaxy Survey to southern declinations,δ<~-30^deg^, and low Galactic latitudes,5^deg^<|b|<30^deg^. Although the sky coverage of the BGS_2_ (~19935 deg^2^) is 37% larger than the sky coverage of the BGS_1_, thenumber of sources is 8% smaller due primarily to large scale structurein the local distribution of galaxies. Otherwise, the sources in theBGS_2_ show similar relationships between number counts and flux densityas observed for the 313 sources in the BGS_1_. The BGS_2_ along with theearlier BGS, represents the best sample currently available for definingthe infrared properties of galaxies in the local (z <~ 0.1) Universe.

Total and effective colors of 501 galaxies in the Cousins VRI photometric system
Total color indices (V-R)T, (V-I)T and effectivecolor indices (V-R)e, (V-I)e in the Cousins VRIphotometric system are presented for 501 mostly normal galaxies. Thecolors are computed using a procedure outlined in the Third ReferenceCatalogue of Bright Galaxies (RC3) whereby standard color curvesapproximated by Laplace-Gauss integrals are fitted to observedphotoelectric multiaperture photometry. 11 sources of such photometrywere used for our analysis, each source being assigned an appropriateweight according to a rigorous analysis of residuals of the data fromthe best-fitting standard color curves. Together with the integrated B-Vand U-B colors provided in RC3, our analysis widens the range ofwavelength of homogeneously defined colors of normal galaxies of allHubble types. We present color-color and color-type relations that canbe modeled to understand the star formation history of galaxies.

Photometrically distinct nuclei in elliptical and early-type disks galaxies.
Not Available

Galaxy properties in different environments. 1: The sample
This paper presents two galaxy samples, respectively in a high and in alow local density environments, that were generated from the SouthernSky Redshift Survey (SSRS) catalog using objective criteria. Apreliminary comparison of physical properties in these two samplesreveals that galaxies in high-density environments tend to be under ahigher starbursting activity, have a deficiency of the neutral hydrogencontent, present a higher fractional Seyfert population and a higherfraction of barred spirals as well. The present samples are intended tobe used in future spectroscopic observations for more detailedinvestigation.

The extended 12 micron galaxy sample
We have selected an all-sky (absolute value of b greater than or equalto 25 deg) 12 micron flux-limited sample of 893 galaxies from the IRASFaint Source Catalog, Version 2 (FSC-2). We have obtained accurate totalfluxes in the IRAS wavebands by using the ADDSCAN procedure for allobjects with FSC-2 12 micron fluxes greater than 0.15 Jy and increasingflux densities from 12 to 60 microns, and defined the sample by imposinga survey limit of 0.22 Jy on the total 12 micron flux. Its completenessis verified, by means of the classical log N - log S andV/Vmax tests, down to 0.30 Jy, below which we have measuredthe incompleteness down to the survey limit, using the log N - log Splot, for our statistical analysis. We have obtained redshifts (mostlyfrom catalogs) for virtually all (98.4%) the galaxies in the sample.Using existing catalogs of active galaxies, we defined a subsample of118 objects consisting of 53 Seyfert 1s and quasars, 63 Seyfert 2s, andtwo blazars (approximately 13% of the full sample), which is the largestunbiased sample of Seyfert galaxies ever assembled. Since the 12 micronflux has been shown to be about one-fifth of the bolometric flux forSeyfert galaxies and quasars, the subsample of Seyferts (includingquasars and blazars) is complete not only to 0.30 Jy at 12 microns butalso with respect to a bolometric flux limit of approximately 2.0 x10-10 ergs/s/sq cm. The average value of V/Vmaxfor the full sample, corrected for incompleteness at low fluxes, is 0.51+/- 0.04, expected for a complete sample of uniformly distributedgalaxies, while the value for the Seyfert galaxy subsample is 0.46 +/-0.10. We have derived 12 microns and far-infrared luminosity functionsfor the AGNs, as well as for the entire sample. We extracted from oursample a complete subsample of 235 galaxies flux-limited (8.3 Jy) at 60microns. The 60 micron luminosity function computed for this subsampleis in satisfactory agreement with the ones derived from the brightgalaxy sample (BGS) and the deep high-galactic latitude sample, bothselected at 60 microns.

General study of group membership. II - Determination of nearby groups
We present a whole sky catalog of nearby groups of galaxies taken fromthe Lyon-Meudon Extragalactic Database. From the 78,000 objects in thedatabase, we extracted a sample of 6392 galaxies, complete up to thelimiting apparent magnitude B0 = 14.0. Moreover, in order to considersolely the galaxies of the local universe, all the selected galaxieshave a known recession velocity smaller than 5500 km/s. Two methods wereused in group construction: a Huchra-Geller (1982) derived percolationmethod and a Tully (1980) derived hierarchical method. Each method gaveus one catalog. These were then compared and synthesized to obtain asingle catalog containing the most reliable groups. There are 485 groupsof a least three members in the final catalog.

Groups of galaxies within 80 Mpc. II - The catalogue of groups and group members
This paper gives a catalog of the groups and associations obtained bymeans of a revised hierarchical algorithm applied to a sample of 4143galaxies with diameters larger than 100 arcsec and redshifts smallerthan 6000 km/s. The 264 groups of galaxies obtained in this way (andwhich contain at least three sample galaxies) are listed, with the looseassociations surrounding them and the individual members of eachaggregate as well; moreover, the location of every entity among 13regions corresponding roughly to superclusters is specified. Finally,1729 galaxies belong to the groups, and 466 to the associations, i.e.,the total fraction of galaxies within the various aggregates amounts to53 percent.

Southern Sky Redshift Survey - The catalog
The catalog of radial velocities for galaxies which comprise thediameter-limited sample of the Southern Sky Redshift Survey ispresented. It consolidates the data of observations carried out at theLas Campanas Observatory, Observatorio Nacional, and South AfricanAstronomical Observatory. The criteria used for the sample selection aredescribed, as well as the observational procedures and the techniqueutilized to obtain the final radial velocities. The intercomparisonbetween radial velocity measurements from different telescopes indicatesthat the final data base is fairly homogeneous with a typical error ofabout 40 km/s. The sample is at present 90 percent complete, and themissing galaxies are predominantly objects with very low surfacebrightness for which it is very difficult to obtain optical redshifts.

Population studies in groups and clusters of galaxies. III - A catalog of galaxies in five nearby groups
Five nearby groups of galaxies have been surveyed using large-scaleplates from the 2.5 m duPont Telescope at Las Campanas Observatory.Catalogs of galaxies brighter than B(T) = 20 are presented for the Leo,Dorado, NGC 1400, NGC 5044, and Antlia groups. A total of 1044 galaxiesare included, from visual inspection of 14 plates, covering 31 degsquare. Galaxies have been classified in the extended Hubble system, andgroup memberships have been assigned based on velocity (where available)and morphology. About half the galaxies listed are likely members of oneof the nearby groups. The catalogs are complete to B(T) = 18, althoughthe completeness limits vary slightly from group to group. Based on Kingmodel fits to the surface density profiles, the core radii of the groupsrange from 0.3 to 1 Mpc, and central densities range from 120 to 1900galaxies Mpc exp-3 brighter than M(BT) = -12.5. Dynamical analysisindicates that all of the groups are likely to be gravitationally bound.

A catalog of southern groups of galaxies
A catalog of groups of galaxies identified in the southern Galactic capis presented. This catalog was constructed utilizing the group-findingalgorithm developed by Huchra and Geller (1982) to analyze galaxysamples with well-defined selection criteria and complete velocityinformation.

Revised supernova rates in Shapley-Ames galaxies
Observations of 855 Shapley Ames galaxies made from November 1, 1980 toOctober 31, 1988, together with improved supernova luminosities, havebeen used to derive the frequency of supernovae of different types, andthe results are presented in tables. From a uniform database of 24supernovae discovered, the following SN rates are found, expressed in SNper century per 10 to the 10th L(B)(solar): SN Ia, 0.3; SN Ib, 0.3; andSN II, 1.0. The present data confirm the relatively high frequency of SNII in late-type galaxies that has been found by many previousinvestigators.

The 12 micron galaxy sample. I - Luminosity functions and a new complete active galaxy sample
An all-sky 12 micron flux-limited sample of active galaxies was selectedfrom the IRAS Point Source Catalog. Most of the sample galaxies are inexisting catalogs, and 99 percent have measured redshifts. The 12-micronand the far-infrared luminosity functions of active and normal galaxiesare derived using IRAS co-added data. A total of 22 percent of thesample galaxies harbor active nuclei. The sample consists almost equallyof Seyfert 1, Seyfert 2, and LINER nuclei. The derived luminosityfuctions for Seyfert 1 and Seyfert 2 galaxies are indistinguishable fromthose of the optically selected CfA sample. Thus, 12 micron selection isthe most efficient available technique for finding complete activegalaxy samples.

On the relationship between radio emission and optical properties in early-type galaxies
To study the origin of radio activity in early-type galaxies, thepossible dependence of their radio emission on basic optical parameters,such as the absolute magnitude, the central velocity dispersion sigma,and the mean surface brightness mu is explored. A sample of 743 E and SOgalaxies is used which is based on three independent radio surveys ofoptically selected galaxies with virtually complete information onmagnitudes, morphological types, redshift distances, diameters, andradio fluxes. For both E and SO galaxies, only the absolute magnitudeappears to be directly related to the radio activity, while sigma and mudo not. Also, a significant dependence of the apparent flattening onradio power is confirmed for E galaxies. Some relevant implications ofthese results are discussed.

The group environment of Seyfert galaxies. II - Spectrophotometry of galaxies in groups
Medium-resolution spectrophotometric data of 104 galaxies have beenobtained. These galaxies are members of 22 loose groups of less thanabout 1 Mpc size. Thirteen of these groups contain Seyfert galaxies.This paper presents calibrated emission-line data and absolute opticalspectra of the individual galaxies as well as plates of each group.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:04h14m36.70s
Aparent dimensions:3.311′ × 1.862′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 1546

→ Request more catalogs and designations from VizieR