Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 1379


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Globular cluster systems in low-luminosity early-type galaxies near the Fornax cluster centre
We present a photometric study of the globular cluster systems (GCSs) ofthe Fornax cluster galaxies NGC1374, NGC1379 and NGC1387. The dataconsist of images from the wide-field MOSAIC imager of the Cerro TololoInter-American Observatory (CTIO) 4-m telescope, obtained withWashington C and Kron-Cousins R filters. The images cover a field of 36× 36arcmin2, corresponding to 200 ×200kpc2 at the Fornax distance. Two of the galaxies, NGC1374and NGC1379, are low-luminosity ellipticals while NGC1387 is alow-luminosity lenticular. Their cluster systems are still embedded inthe cluster system of NGC1399. Therefore, the use of a large field iscrucial and some differences to previous work can be explained by this.The colour distributions of all GCSs are bimodal. NGC1387 presents aparticularly distinct separation between red and blue clusters and anoverproportionally large population of red clusters. The radialdistribution is different for blue and red clusters, red clusters beingmore concentrated towards the respective galaxies. The different colourand radial distributions point to the existence of two globular clustersubpopulations in these galaxies. Specific frequencies are in the rangeSN= 1.4-2.4, smaller than the typical values for ellipticalgalaxies. These galaxies might have suffered tidal stripping of blueglobular clusters by NGC1399.

The Look-Back Time Evolution of the UV Upturn Phenomenon
In order to investigate the origin of the far-UV (FUV) flux fromearly-type galaxies, Galaxy Evolution Explorer (GALEX) is collecting theUV data for the elliptical-rich clusters at moderate redshifts (z <0.25) where the dominant FUV source is predicted to be hothorizontal-branch (HB) stars and their post-HB progeny. The earlyresults show that the FUV flux of quiescent early-type galaxies doesevolve substantially during the last 1--2 Gyr of look-back time, and theobserved UV fading is consistent with the variation predicted by thepopulation synthesis models where the mean temperature of HB starsdeclines rapidly with increasing look-back time.

The Ages of Elliptical Galaxies from Infrared Spectral Energy Distributions
The mean ages of early-type galaxies obtained from the analysis ofoptical spectra give a mean age of 8 Gyr at z=0, with 40% being youngerthan 6 Gyr. Independent age determinations are possible by usinginfrared spectra (5-21 μm), which we have obtained with the InfraredSpectrograph on Spitzer. This age indicator is based on the collectivemass-loss rate of stars, in which mass loss from AGB stars produces asilicate emission feature at 9-12 μm. This feature decreases morerapidly than the shorter wavelength continuum as a stellar populationages, providing an age indicator. From observations of 30 nearbyearly-type galaxies, 29 show a spectral energy distribution dominated bystars, and one has significant emission from the ISM and is excluded.The infrared age indicators for the 29 galaxies show them all to be old,with a mean age of about 10 Gyr and a standard deviation of only a fewGyr. This is consistent with the ages inferred from the values ofM/LB, but is inconsistent with the ages derived from theoptical line indices, which can be much younger. All of these ageindicators are luminosity weighted and should be correlated, even ifmultiple-age components are considered. The inconsistency indicates thatthere is a significant problem with either the infrared and theM/LB ages, which agree, or with the ages inferred from theoptical absorption lines.

Density-potential pairs for spherical stellar systems with Sérsic light profiles and (optional) power-law cores
Popular models for describing the luminosity-density profiles ofdynamically hot stellar systems (e.g. Jaffe, Hernquist, Dehnen) wereconstructed with the desire to match the deprojected form of anR1/4 light profile. Real galaxies, however, are now known tohave a range of different light-profile shapes that scale with mass.Consequently, although highly useful, the above models have implicitlimitations, and this is illustrated here through their application to anumber of real galaxy density profiles. On the other hand, theanalytical density profile given by Prugniel & Simien closelymatches the deprojected form of Sérsic R1/n lightprofiles - including deprojected exponential light profiles. It is thusapplicable for describing bulges in spiral galaxies, dwarf ellipticalgalaxies, and both ordinary and giant elliptical galaxies. Moreover, theobserved Sérsic quantities define the parameters of the densitymodel. Here we provide simple equations, in terms of elementary andspecial functions, for the gravitational potential and force associatedwith this density profile. Furthermore, to match galaxies with partiallydepleted cores, and better explore the supermassive black hole/galaxyconnection, we have added a power-law core to this density profile andderived similar expressions for the potential and force of this hybridprofile. Expressions for the mass and velocity dispersion, assumingisotropy, are also given. These spherical models may also proveappropriate for describing the dark matter distribution in haloes formedfrom ΛCDM cosmological simulations.

Mass-to-light ratio gradients in early-type galaxy haloes
Owing to the fact that the near future should see a rapidly expandingset of probes of the halo masses of individual early-type galaxies, weintroduce a convenient parameter for characterizing the halo masses fromboth observational and theoretical results:∇lΥ, the logarithmic radial gradient of themass-to-light ratio. Using halo density profiles from Λ-cold darkmatter (CDM) simulations, we derive predictions for this gradient forvarious galaxy luminosities and star formation efficienciesɛSF. As a pilot study, we assemble the available∇lΥ data from kinematics in early-type galaxies- representing the first unbiased study of halo masses in a wide rangeof early-type galaxy luminosities - and find a correlation betweenluminosity and ∇lΥ, such that the brightestgalaxies appear the most dark-matter dominated. We find that thegradients in most of the brightest galaxies may fit in well with theΛCDM predictions, but that there is also a population of faintergalaxies whose gradients are so low as to imply an unreasonably highstar formation efficiency ɛSF > 1. This difficultyis eased if dark haloes are not assumed to have the standard ΛCDMprofiles, but lower central concentrations.

The Look-back Time Evolution of Far-Ultraviolet Flux from Elliptical Galaxies: The Fornax Cluster and A2670
In order to investigate the origin of the far-UV (FUV) flux from theearly-type galaxies, the Galaxy Evolution Explorer is collecting the UVdata for the elliptical-rich clusters at moderate redshifts (z<0.2)where the dominant FUV source is predicted to be hot horizontal-branch(HB) stars and their post-HB progeny. Here we present our first resultfor the early-type galaxies in A2670 at z=0.076. Compared to NGC 1399, anearby giant elliptical galaxy in the Fornax Cluster, it appears thatthe rest-frame FUV-V color of the giant elliptical galaxies gets redderby ~0.7 mag at the distance of A2670 (z=0.076; look-back time~1.0 Gyr).Although a detailed comparison with the models is postponed until morecluster data are accumulated, it is interesting to note that this valueis consistent with the variation predicted by the population synthesismodels where the mean temperature of HB stars declines rapidly withincreasing look-back time.

A wide-field photometric study of the globular cluster system of NGC 4636
Previous smaller-scale studies of the globular cluster system of NGC4636, an elliptical galaxy in the southern part of the Virgo cluster,have revealed an unusually rich globular cluster system. Were-investigate the cluster system of NGC 4636 with wide-field Washingtonphotometry. The globular cluster luminosity function can be followedroughly 1 mag beyond the turn-over magnitude found at {V} =23.31±0.13 for the blue cluster sub-population. This correspondsto a distance modulus of ({m}-{M})=31.24±0.17, 0.4 mag largerthan the distance determined from surface brightness fluctuations. Thehigh specific frequency is confirmed, yet the exact value remainsuncertain because of the uncertain distance: it varies between5.6±1.2 and 8.9±1.2. The globular cluster system has aclearly bimodal color distribution. The color peak positions show noradial dependence and are in good agreement with the values found forother galaxies studied in the same filter system. However, a luminositydependence is found: brighter clusters with an“intermediate” color exist. The clusters exhibit a shallowradial distribution within 7´, represented by a power-law with anexponent of -1.4. Within the same radial interval, the galaxy light hasa distinctly steeper profile. Because of the difference in the clusterand light distribution the specific frequency increases considerablywith radius. At 7´ and 9´ the density profiles of the redand blue clusters, respectively, change strongly: the power-law indicesdecrease to around -5 and become similar to the galaxy profile. Thissteep profile indicates that we reach the outer rim of the clustersystem at approximately 11´. This interpretation is supported bythe fact that in particular the density distribution of the blue clusterpopulation can be well fit by the projection of a truncated power-lawmodel with a core. This feature is seen for the first time in a globularcluster system. While the radial distribution of the cluster and fieldpopulations are rather different, this is not true for the ellipticityof the system: the elongation as well as the position angle of thecluster system agree well with the galaxy light. We compare the radialdistribution of globular clusters with the light profiles for a sampleof elliptical galaxies. The difference observed in NGC 4636 is typicalof an elliptical galaxy of this luminosity. The intrinsic specificfrequency of the blue population is considerably larger than that of thered one.Tables A.1 to A.6 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/433/43

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

Peculiarities and populations in elliptical galaxies. I. An old question revisited
Morphological peculiarities, as defined from isophote asymmetries andnumber of detected shells, jets or similar features, have been estimatedin a sample of 117 E classified galaxies, and qualified by an ad hocΣ2 index. The overall frequency of ``peculiar'' objects(Pec subsample) is 32.5%. It decreases with the cosmic density of theenvironment, being minimal for the Virgo cluster, the densestenvironment in the sampled volume. This environmental effect is strongerfor galaxies with relatively large Σ2.The Pec subsample objects are compared with ``normal'' objects (Nopsubsample) as regards their basic properties. Firstly, theysystematically deviate from the Fundamental Plane and the Faber-Jacksonrelation derived for the Nop subsample, being too bright for their mass.Secondly, the dust content of galaxies, as estimated from IRAS fluxes,are similar in both subsamples. Third, the same is true of the frequencyof Kinematically Distinct cores (KDC), suggesting that KDC andmorphological peculiarities do not result from the same events in thehistory of E-galaxies.Using the Nop sample alone, we obtain very tight reference relationsbetween stellar population indicators (U-B, B-V, B-R, V-I,Mg2, Hβ, , Mgb) and the central velocitydispersion σ0. The discussion of the residuals of theserelations allows us to classify the Pec galaxies in two families i.e.the YP or NGC 2865 family, and the NP or NGC 3923 one. Galaxies in thefirst group show consistent evidence for a younger stellar populationmixed with the old one, in agreement with classical results (Schweizeret al. \cite{Schweizer1990}; Schweizer & Seitzer\cite{Schweizer1992}). The second group, however, has ``normal``, orreddish, populations. It is remarkable that a fraction (circa 40%) ofmorphologically perturbed objects do not display any signature of ayoung population, either because the event responsible for thepecularity is too ancient, or because it did not produce significantstar formation (or eventually that the young sub-population has highmetallicity).A preliminary attempt is made to interpret the populations of Pecobjects by combining a young Single Stellar Population with a Nopgalaxy, with only limited success, perhaps largely due to uncertaintiesin the SSP indices used.Based in part on observations collected at the Observatoire deHaute-Provence.Figures \ref{fig1}-\ref{fig3} are only available in electronic form athttp://www.edpsciences.orgTable 10 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/833

Dynamical evolution of globular cluster systems in clusters of galaxies - I. The case of NGC 1404 in the Fornax cluster
We investigate, via numerical simulations, the tidal stripping andaccretion of globular clusters (GCs). In particular, we focus oncreating models that simulate the situation for the GC systems of NGC1404 and 1399 in the Fornax cluster, which have poor (specific frequencySN~ 2) and rich (SN~ 10) GC systems, respectively.We initially assign NGC 1404 in our simulation a typical SN(~5) for cluster ellipticals, and find that its GC system can only bereduced through stripping to the presently observed value, if its orbitis highly eccentric (with orbital eccentricity of >0.5) and if theinitial scalelength of the GCs system is about twice as large as theeffective radius of NGC 1404 itself. These stripped GCs can be said tohave formed a `tidal stream' of intracluster globular clusters (ICGCs)orbiting the centre of the Fornax cluster (many of which would beassigned to NGC 1399 in an imaging study). The physical properties ofthese GCs (e.g. number, radial distribution and kinematics) depend onthe orbit and initial distribution of GCs in NGC 1404. Our simulationsalso predict a trend for SN to rise with increasingclustercentric distance - a trend for which there is some observationalsupport in the Fornax cluster. We demonstrate that, because thekinematical properties of ICGCs formed by tidal stripping in the clustertidal field depend strongly on the orbits of their previous hostgalaxies, observations of ICGC kinematics provides a new method forprobing galaxy dynamics in a cluster.

The surface brightness and colour-magnitude relations for Fornax cluster galaxies
We present BVI photometry of 190 galaxies in the central 4 ×3deg2 region of the Fornax cluster observed with the MichiganCurtis Schmidt Telescope. Results from the Fornax Cluster SpectroscopicSurvey (FCSS) and the Flair-II Fornax Surveys have been used to confirmthe membership status of galaxies in the Fornax Cluster Catalogue (FCC).In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmedradial velocities.In this paper, we investigate the surface brightness-magnitude relationfor Fornax cluster galaxies. Particular attention is given to the sampleof cluster dwarfs and the newly discovered ultracompact dwarf galaxies(UCDs) from the FCSS. We examine the reliability of the surfacebrightness-magnitude relation as a method for determining clustermembership and find that at surface brightnesses fainter than 22 magarcsec-2, it fails in its ability to distinguish betweencluster members and barely resolved background galaxies. Cluster membersexhibit a strong surface brightness-magnitude relation. Both elliptical(E) galaxies and dwarf elliptical (dE) galaxies increase in surfacebrightness as luminosity decreases. The UCDs lie off the locus of therelation.B-V and V-I colours are determined for a sample of 113 cluster galaxiesand the colour-magnitude relation is explored for each morphologicaltype. The UCDs lie off the locus of the colour-magnitude relation. Theirmean V-I colours (~1.09) are similar to those of globular clustersassociated with NGC 1399. The location of the UCDs on both surfacebrightness and colour-magnitude plots supports the `galaxy threshing'model for infalling nucleated dwarf elliptical (dE, N) galaxies.

Measuring Distances and Probing the Unresolved Stellar Populations of Galaxies Using Infrared Surface Brightness Fluctuations
To empirically calibrate the IR surface brightness fluctuation (SBF)distance scale and probe the properties of unresolved stellarpopulations, we measured fluctuations in 65 galaxies using NICMOS on theHubble Space Telescope. The early-type galaxies in this sample includeelliptical and S0 galaxies and spiral bulges in a variety ofenvironments. Absolute fluctuation magnitudes in the F160W (1.6 μm)filter (MF160W) were derived for each galaxy using previouslymeasured I-band SBF and Cepheid variable star distances. F160W SBFs canbe used to measure distances to early-type galaxies with a relativeaccuracy of ~10%, provided that the galaxy color is known to ~0.035 magor better. Near-IR fluctuations can also reveal the properties of themost luminous stellar populations in galaxies. Comparison of F160Wfluctuation magnitudes and optical colors to stellar population modelpredictions suggests that bluer elliptical and S0 galaxies havesignificantly younger populations than redder ones and may also be moremetal-rich. There are no galaxies in this sample with fluctuationmagnitudes consistent with old, metal-poor (t>5 Gyr, [Fe/H]<-0.7)stellar population models. Composite stellar population models implythat bright fluctuations in the bluer galaxies may be the result of anepisode of recent star formation in a fraction of the total mass of agalaxy. Age estimates from the F160W fluctuation magnitudes areconsistent with those measured using the Hβ Balmer-line index. Thetwo types of measurements make use of completely different techniquesand are sensitive to stars in different evolutionary phases. Bothtechniques reveal the presence of intermediate-age stars in theearly-type galaxies of this sample.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by AURA,Inc., under NASA contract NAS 5-26555.

Redshift-Distance Survey of Early-Type Galaxies: Spectroscopic Data
We present central velocity dispersions and Mg2 line indicesfor an all-sky sample of ~1178 elliptical and S0 galaxies, of which 984had no previous measures. This sample contains the largest set ofhomogeneous spectroscopic data for a uniform sample of ellipticalgalaxies in the nearby universe. These galaxies were observed as part ofthe ENEAR project, designed to study the peculiar motions and internalproperties of the local early-type galaxies. Using 523 repeatedobservations of 317 galaxies obtained during different runs, the dataare brought to a common zero point. These multiple observations, takenduring the many runs and different instrumental setups employed for thisproject, are used to derive statistical corrections to the data and arefound to be relatively small, typically <~5% of the velocitydispersion and 0.01 mag in the Mg2 line strength. Typicalerrors are about 8% in velocity dispersion and 0.01 mag inMg2, in good agreement with values published elsewhere.

Redshift-Distance Survey of Early-Type Galaxies: Circular-Aperture Photometry
We present R-band CCD photometry for 1332 early-type galaxies, observedas part of the ENEAR survey of peculiar motions using early-typegalaxies in the nearby universe. Circular apertures are used to tracethe surface brightness profiles, which are then fitted by atwo-component bulge-disk model. From the fits, we obtain the structuralparameters required to estimate galaxy distances using theDn-σ and fundamental plane relations. We find thatabout 12% of the galaxies are well represented by a pure r1/4law, while 87% are best fitted by a two-component model. There are 356repeated observations of 257 galaxies obtained during different runsthat are used to derive statistical corrections and bring the data to acommon system. We also use these repeated observations to estimate ourinternal errors. The accuracy of our measurements are tested by thecomparison of 354 galaxies in common with other authors. Typical errorsin our measurements are 0.011 dex for logDn, 0.064 dex forlogre, 0.086 mag arcsec-2 for<μe>, and 0.09 for mRC,comparable to those estimated by other authors. The photometric datareported here represent one of the largest high-quality and uniformall-sky samples currently available for early-type galaxies in thenearby universe, especially suitable for peculiar motion studies.Based on observations at Cerro Tololo Inter-American Observatory (CTIO),National Optical Astronomy Observatory, which is operated by theAssociation of Universities for Research in Astronomy, Inc., undercooperative agreement with the National Science Foundation (NSF);European Southern Observatory (ESO); Fred Lawrence Whipple Observatory(FLWO); and the MDM Observatory on Kitt Peak.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

Surface brightness fluctuation distances for dwarf elliptical galaxies in the Fornax cluster
We have obtained deep B and R-band CCD images of eight dwarf elliptical(dE) galaxies in the Fornax cluster using the FORS1 instrument at theVLT in service mode under excellent atmospheric conditions. A total of92 fields distributed over the central regions of the galaxies have beenanalysed to measure local (B-R)0 colours and R-band surfacebrightness fluctuation (SBF) magnitudes /line{m}R. Within agalaxy the observed correlation of (B-R)0 with/line{m}R0 follows closely the predicted slope ofthe colour-fluctuation luminosity relation for composite single-burst,mainly old, metal-poor stellar populations. This allows to determine thedistances of the dEs from simple offset measurements to a typically 9%accuracy. The distance distribution of these genuine cluster dwarfscenters at a mean distance of (m-M)0=31.54+/-0.07 mag, or20.3 +/- 0.7 Mpc, a value that is in best agreement with previous SBFwork on Fornax early-type giants and thus represents a robust estimateof the distance to the Fornax cluster core. The application of thebootstrap resampling technique on the distance data further reveals acluster depth of sigmaint = 1.4{+0.5 atop -0.8} Mpc. We takethis preliminary result as a confirmation of the compact appearance ofFornax in the projection on the sky although the cluster might beslightly more elongated along the line of sight. Combining the newlyderived cluster distance with the cosmological velocity of Fornax of1324+/-41 km s-1 gives a Hubble constant of H0 =65 +/- 4 km s-1 Mpc-1. This value is consistent atthe 95% confidence level with both the most recent result from the teamthat favours a long distance scale and the final value adopted by theHST ``Key Project'' team in their work for the Hubble constant. Finally,we explore the possibility to determine rough metallicities of ourcluster dEs from their (B-R)0 colours via Worthey's stellarpopulation synthesis models. The median metallicities are found in therange from -1.5 to -1 with a concentration around [Fe/H] =-1. Acomparison with spectral line indices results available for threegalaxies shows good agreement. Moreover, the derived metallicities placethe bright Fornax dEs on the extension of the metallicity-luminosityrelation defined by the low luminous Local Group dEs which providesadditional support for the (B-R)0 colour as a usefulmetallicity estimator. The data further suggest an age range between 10and 12 Gyr for the Fornax dwarfs.Based on observations collected at the European Southern Observatory(ESO 68.A-0176).

Early-type galaxies in low-density environments
We describe the construction and study of an objectively defined sampleof early-type galaxies in low-density environments. The sample galaxiesare selected from a recently completed redshift survey using uniform andreadily quantified isolation criteria, and are drawn from a sky area of~700 deg2, to a depth of 7000 km s-1 and anapparent magnitude limit of bJ<= 16.1. Their early-type(E/S0) morphologies are confirmed by subsequent CCD imaging. Five out ofthe nine sample galaxies show signs of morphological peculiarity such astidal debris or blue circumnuclear rings. We confirm that E/S0 galaxiesare rare in low-density regions, accounting for only ~8 per cent of thetotal galaxy population in such environments. We present spectroscopicobservations of nine galaxies in the sample, which are used, inconjunction with updated stellar population models, to investigate starformation histories. Our line-strength analysis is conducted at therelatively high spectral resolution of 4.1 Å. Environmentaleffects on early-type galaxy evolution are investigated by comparisonwith a sample of Fornax cluster E/S0s (identically analysed). Resultsfrom both samples are compared with predictions from semi-analyticgalaxy formation models. From the strength of [OII]λ3727 emissionwe infer only a low level of ongoing star formation (<0.15Msolar yr-1). Relative to the Fornax sample, alarger fraction of the galaxies exhibit [OIII]λ5007 nebularemission and, where present, these lines are slightly stronger thantypical for cluster E/S0s. The Mg-σ relation of E/S0s inlow-density regions is shown to be indistinguishable from that of theFornax sample. Luminosity-weighted stellar ages and metallicities aredetermined by considering various combinations of line-indices; inparticular the HγF versus Fe5015 diagram cleanlyresolves the age-metallicity degeneracy at the spectral resolution ofour analysis. At a given luminosity, the E/S0 galaxies in low-densityregions are younger than the E/S0s in clusters (by ~2-3 Gyr), and alsomore metal-rich (by ~0.2 dex). We infer that an anti-correlation of ageand metallicity effects is responsible for maintaining the zero-point ofthe Mg-σ relation. The youngest galaxies in our sample show clearmorphological signs of interaction. The lower mean age of our sample,relative to cluster samples, confirms, at least qualitatively, a robustprediction of hierarchical galaxy formation models. By contrast, theenhanced metallicity in the field is contrary to the predictions andhighlights shortcomings in the detailed treatment of star formationprocesses in current models. The [Mg/Fe] abundance ratio appears to spana similar, mostly super-solar, range both in low-density regions and inFornax cluster galaxies. This result is quite unexpected in simplehierarchical models.

The `Photometric Plane' of elliptical galaxies
The Sérsic (r1/n) index n of an elliptical galaxy (orbulge) has recently been shown to correlate strongly (r= 0.8) with thecentral velocity dispersion of a galaxy. This index could thereforeprove extremely useful and cost-effective (in terms of both telescopetime and data reduction) for many fields of extragalactic research. Itis a purely photometric quantity which apparently not only traces themass of a bulge but has additionally been shown to reflect the degree ofbulge concentration. This paper explores the affect of replacing thecentral velocity dispersion term in the Fundamental Plane with theSérsic index n. Using a sample of early-type galaxies from theVirgo and Fornax clusters, various (B-band) `Photometric Planes' wereconstructed and found to have a scatter of 0.14-0.17 dex in logre, or a distance error of 38-48 per cent per galaxy (thehigher values arising from the inclusion of the S0 galaxies). Thecorresponding Fundamental Plane yielded a 33-37 per cent error indistance for the same galaxy samples (i.e. ~15-30 per cent lessscatter). The gains in using a hyperplane (i.e. adding the Sérsicindex to the Fundamental Plane as a fourth parameter) were small, givinga 27-33 per cent error in distance, depending on the galaxy sample used.The Photometric Plane has been used here to estimate the Virgo-Fornaxdistance modulus; giving a value of 0.62 +/- 0.30 mag[cf. 0.51 +/- 0.21,Hubble Space Telescope (HST) Key Project on the Extragalactic DistanceScale]. The prospects for using the Photometric Plane at higherredshifts appears promising. Using published data on the intermediateredshift cluster Cl 1358 + 62 (z= 0.33) gave a Photometric Planedistance error of 35-41 per cent per galaxy.

A catalogue and analysis of local galaxy ages and metallicities
We have assembled a catalogue of relative ages, metallicities andabundance ratios for about 150 local galaxies in field, group andcluster environments. The galaxies span morphological types from cD andellipticals, to late-type spirals. Ages and metallicities were estimatedfrom high-quality published spectral line indices using Worthey &Ottaviani (1997) single stellar population evolutionary models. Theidentification of galaxy age as a fourth parameter in the fundamentalplane (Forbes, Ponman & Brown 1998) is confirmed by our largersample of ages. We investigate trends between age and metallicity, andwith other physical parameters of the galaxies, such as ellipticity,luminosity and kinematic anisotropy. We demonstrate the existence of agalaxy age-metallicity relation similar to that seen for local galacticdisc stars, whereby young galaxies have high metallicity, while oldgalaxies span a large range in metallicities. We also investigate theinfluence of environment and morphology on the galaxy age andmetallicity, especially the predictions made by semi-analytichierarchical clustering models (HCM). We confirm that non-clusterellipticals are indeed younger on average than cluster ellipticals aspredicted by the HCM models. However we also find a trend for the moreluminous galaxies to have a higher [Mg/Fe] ratio than the lowerluminosity galaxies, which is opposite to the expectation from HCMmodels.

Surface Brightness Fluctuations of Fornax Cluster Galaxies: Calibration of Infrared Surface Brightness Fluctuations and Evidence for Recent Star Formation
We have measured KS-band (2.0-2.3 μm) surface brightnessfluctuations (SBFs) of 19 early-type galaxies in the Fornax Cluster.Fornax is ideally suited both for calibrating SBFs as distanceindicators and for using SBFs to probe the unresolved stellar content ofearly-type galaxies. Combining our results with published data for othernearby clusters, we calibrate KS-band SBFs using Hubble SpaceTelescope (HST) Cepheid cluster distances and I-band SBF distances toindividual galaxies. With the latter, the resulting calibrationisMKS=(-5.84+/-0.04)+(3.6+/-0.8)[(V-Ic)0-1.15],valid for1.05<(V-Ic)0<1.25 and not including anysystematic errors in the HST Cepheid distance scale. The fit accountsfor the covariance between V-Ic and MKSwhen calibrated in this fashion. The intrinsic cosmic scatter ofMKS appears to be larger than that of I-band SBFs.S0 galaxies may follow a different relation, although the data areinconclusive. The discovery of correlation between KS-bandfluctuation magnitudes and colors with V-Ic is a new clueinto the star formation histories of early-type galaxies. This relationnaturally accounts for galaxies previously claimed to have anomalouslybright K-band SBFs, namely, M32 and NGC 4489. Models indicate that thestellar populations dominating the SBF signal have a significant rangein age; some scatter in metallicity may also be present. The youngestages imply some galaxies have very luminous giant branches, akin tothose in intermediate-age (few Gyr) Magellanic Cloud clusters. Theinferred metallicities are roughly solar, although this depends on thechoice of theoretical models. A few Fornax galaxies have unusuallybright KS-band SBFs, perhaps originating from ahigh-metallicity burst of star formation in the last few Gyr. Theincreased spread and brightening of the KS-band SBFs withbluer V-Ic suggest that the lower mass cluster galaxies(<~0.1L*) may have had more extended and more heterogeneous starformation histories than those of the more massive galaxies.

Redshift-Distance Survey of Early-Type Galaxies. I. The ENEARc Cluster Sample
This paper presents data on the ENEARc subsample of the larger ENEARsurvey of nearby early-type galaxies. The ENEARc galaxies belong toclusters and were specifically chosen to be used for the construction ofa Dn-σ template. The ENEARc sample includes newmeasurements of spectroscopic and photometric parameters (redshift,velocity dispersion, line index Mg2, and the angular diameterdn), as well as data from the literature. New spectroscopicdata are given for 229 cluster early-type galaxies, and new photometryis presented for 348 objects. Repeat and overlap observations withexternal data sets are used to construct a final merged catalogconsisting of 640 early-type galaxies in 28 clusters. Objectivecriteria, based on catalogs of groups of galaxies derived from completeredshift surveys of the nearby universe, are used to assign galaxies toclusters. In a companion paper, these data are used to construct thetemplate Dn-σ distance relation for early-typegalaxies, which has been used to estimate galaxy distances and derivepeculiar velocities for the ENEAR all-sky sample. Based on observationsat Complejo Astronomico El Leoncito, operated under agreement betweenthe Consejo Nacional de Investigaciones Científicas de laRepública Argentina and the National Universities of La Plata,Córdoba, and San Juan; Cerro Tololo Inter-American Observatory,National Optical Astronomical Observatory, which is operated by theAssociation of Universities for Research in Astronomy, Inc., undercooperative agreement with the National Science Foundation; the EuropeanSouthern Observatory (ESO), partially under the ESO-ON agreement; theFred Lawrence Whipple Observatory; the Observatório do Pico dosDias, operated by the Laboratório Nacional de Astrofísicaand the MDM Observatory at Kitt Peak.

Weak homology of elliptical galaxies.
Studies of the Fundamental Plane of early-type galaxies, from small tointermediate redshifts, are generally carried out under the guidingprinciple that the Fundamental Plane reflects the existence of anunderlying mass-luminosity relation for such galaxies, in a scenariowhere galaxies are homologous systems in dynamical equilibrium. In thispaper we re-examine the question of whether a systematic non-homologycould be partly responsible for the correlations that define theFundamental Plane. We start by studying a small set of objectscharacterized by photometric profiles that have been pointed out todeviate significantly from the standard R1/4 law. For theseobjects we confirm that a generic R1/n law, with n a freeparameter, can provide superior fits (the best-fit value of n can belower than 2.5 or higher than 10), better than those that can beobtained by a pure R1/4 law, by an R1/4 +exponential model, and by other dynamically justified self-consistentmodels. Therefore, strictly speaking, elliptical galaxies should not beconsidered homologous dynamical systems. Still, a case for weakhomology, useful for the interpretation of the Fundamental Plane, couldbe made if the best-fit parameter n, as often reported, correlates withgalaxy luminosity L, provided the underlying dynamical structure alsofollows a systematic trend with luminosity. We demonstrate that thisstatement may be true even in the presence of significant scatter in thecorrelation n(L). Preliminary indications provided by a set of ``datapoints" associated with a sample of 14 galaxies suggest that neither thestrict homology nor the constant stellar mass-to-light solution are asatisfactory explanation of the observed Fundamental Plane. Theseconclusions await further extensions and clarifications, because theclass of low-luminosity early-type galaxies, which contributesignificantly to the Fundamental Plane, falls outside the simpledynamical framework considered here and because dynamical considerationsshould be supplemented with other important constraints derived from theevolution of stellar populations.

Evolution of globular cluster systems in three galaxies of the Fornax cluster
We studied and compared the radial profiles of globular clusters and ofthe stellar bulge component in three galaxies of the Fornax clusterobserved with the WFPC2 of the Hubble Space Telescope (HST). The starsare more concentrated toward the galactic centres than globularclusters, in agreement with what has already been observed in many othergalaxies: if the observed difference is the result of evolution of theglobular cluster systems starting from initial profiles similar to thoseof the halo-bulge stellar components, a relevant fraction of theirinitial mass (74, 47 and 52 per cent for NGC 1379, 1399 and 1404,respectively) should have disappeared in the inner regions. This masshas probably contributed to the nuclear field population, local dynamicsand high-energy phenomena in the primeval life of the galaxy. Anindication in favour of the evolutionary interpretation of thedifference between the globular cluster system and stellar bulge radialprofiles is given by the positive correlation we found between the valueof the mass lost from the globular cluster system and the centralgalactic black hole mass in the set of seven galaxies for which thesedata are available.

A catalogue and analysis of X-ray luminosities of early-type galaxies
We present a catalogue of X-ray luminosities for 401 early-typegalaxies, of which 136 are based on newly analysed ROSAT PSPC pointedobservations. The remaining luminosities are taken from the literatureand converted to a common energy band, spectral model and distancescale. Using this sample we fit the LX:LB relationfor early-type galaxies and find a best-fit slope for the catalogue of~2.2. We demonstrate the influence of group-dominant galaxies on the fitand present evidence that the relation is not well modelled by a singlepower-law fit. We also derive estimates of the contribution to galaxyX-ray luminosities from discrete-sources and conclude that they provideLdscr/LB~=29.5ergs-1LBsolar-1. Wecompare this result with luminosities from our catalogue. Lastly, weexamine the influence of environment on galaxy X-ray luminosity and onthe form of the LX:LB relation. We conclude thatalthough environment undoubtedly affects the X-ray properties ofindividual galaxies, particularly those in the centres of groups andclusters, it does not change the nature of whole populations.

A synthesis of data from fundamental plane and surface brightness fluctuation surveys
We perform a series of comparisons between distance-independentphotometric and spectroscopic properties used in the surface brightnessfluctuation (SBF) and fundamental plane (FP) methods of early-typegalaxy distance estimation. The data are taken from two recent surveys:the SBF Survey of Galaxy Distances and the Streaming Motions of AbellClusters (SMAC) FP survey. We derive a relation between(V-I)0 colour and Mg2 index using nearly 200galaxies and discuss implications for Galactic extinction estimates andearly-type galaxy stellar populations. We find that the reddenings fromSchlegel et al. for galaxies with E(B-V)>~0.2mag appear to beoverestimated by 5-10 per cent, but we do not find significant evidencefor large-scale dipole errors in the extinction map. In comparison withstellar population models having solar elemental abundance ratios, thegalaxies in our sample are generally too blue at a given Mg2;we ascribe this to the well-known enhancement of the α-elements inluminous early-type galaxies. We confirm a tight relation betweenstellar velocity dispersion σ and the SBF `fluctuation count'parameter N, which is a luminosity-weighted measure of the total numberof stars in a galaxy. The correlation between N and σ is eventighter than that between Mg2 and σ. Finally, we deriveFP photometric parameters for 280 galaxies from the SBF survey data set.Comparisons with external sources allow us to estimate the errors onthese parameters and derive the correction necessary to bring them on tothe SMAC system. The data are used in a forthcoming paper, whichcompares the distances derived from the FP and SBF methods.

2D modelling of the light distribution of early-type galaxies in a volume-limited sample - II. Results for real galaxies
In this paper we analyse the results of the two-dimensional (2D) fit ofthe light distribution of 73 early-type galaxies belonging to the Virgoand Fornax clusters, a sample volume- and magnitude-limited down toMB=-17.3, and highly homogeneous. In our previous paper(Paper I) we have presented the adopted 2D models of thesurface-brightness distribution - namely the r1/n and(r1/n+exp) models - we have discussed the main sources oferror affecting the structural parameters, and we have tested theability of the chosen minimization algorithm (MINUIT) in determining thefitting parameters using a sample of artificial galaxies. We show that,with the exception of 11 low-luminosity E galaxies, the best fit of thereal galaxy sample is always achieved with the two-component(r1/n+exp) model. The improvement in the χ2due to the addition of the exponential component is found to bestatistically significant. The best fit is obtained with the exponent nof the generalized r1/n Sersic law different from theclassical de Vaucouleurs value of 4. Nearly 42 per cent of the samplehave n<2, suggesting the presence of exponential `bulges' also inearly-type galaxies. 20 luminous E galaxies are fitted by thetwo-component model, with a small central exponential structure (`disc')and an outer big spheroid with n>4. We believe that this is probablydue to their resolved core. The resulting scalelengths Rh andRe of each component peak approximately at ~1 and ~2kpc,respectively, although with different variances in their distributions.The ratio Re/Rh peaks at ~0.5, a value typical fornormal lenticular galaxies. The first component, represented by ther1/n law, is probably made of two distinct families,`ordinary' and `bright', on the basis of their distribution in theμe-log(Re) plane, a result already suggested byCapaccioli, Caon and D'Onofrio. The bulges of spirals and S0 galaxiesbelong to the `ordinary' family, while the large spheroids of luminous Egalaxies form the `bright' family. The second component, represented bythe exponential law, also shows a wide distribution in theμ0c-log(Rh) plane. Small discs (orcores) have short scalelengths and high central surface brightness,while normal lenticulars and spiral galaxies generally have scalelengthshigher than 0.5kpc and central surface brightness brighter than20magarcsec-2 (in the B band). The scalelengths Reand Rh of the `bulge' and `disc' components are probablycorrelated, indicating that a self-regulating mechanism of galaxyformation may be at work. Alternatively, two regions of theRe-Rh plane are avoided by galaxies due todynamical instability effects. The bulge-to-disc (B/D) ratio seems tovary uniformly along the Hubble sequence, going from late-type spiralsto E galaxies. At the end of the sequence the ratio between the largespheroidal component and the small inner core can reach B/D~100.

Cold gas in elliptical galaxies
We explore the evolution of the cold gas (molecular and neutralhydrogen) of elliptical galaxies and merger remnants ordered into a timesequence on the basis of spectroscopic age estimates. We find that thefraction of cold gas in early merger remnants decreases significantlyfor ~1-2Gyr, but subsequent evolution toward evolved elliptical systemssees very little change. This trend can be attributed to an initial gasdepletion by strong star formation, which subsequently declines toquiescent rates. This explanation is consistent with the merger picturefor the formation of elliptical galaxies. We also explore the relationbetween the HI-to-H2 mass ratio and spectroscopic galaxy age,but find no evidence for a statistically significant trend. Thissuggests little net HI-to-H2 conversion for the systems inthe present sample.

Structural evolution in elliptical galaxies: the age-shape relation
We test the hypothesis that the apparent axial ratio of an ellipticalgalaxy is correlated with the age of its stellar population. We findthat old ellipticals (with estimated ages t>7.5Gyr) are rounder onaverage than younger ellipticals. The statistical significance of thisshape difference is greatest at small radii; a Kolmogorov-Smirnov testcomparing the axial ratios of the two populations at R=Re/16yields a statistical significance greater than 99.96 per cent. Therelation between age and apparent shape is linked to the core/power-lawsurface brightness profile dichotomy. Core ellipticals have olderstellar populations, on average, than power-law ellipticals and arerounder in their inner regions. Our findings are consistent with ascenario in which power-law ellipticals are formed in gas-rich mergers,while core ellipticals form in dissipationless mergers, with coresformed and maintained by the influence of a binary black hole.

Mass profiles and anisotropies of early-type galaxies
We discuss the problem of using stellar kinematics of early-typegalaxies to constrain the orbital anisotropies and radial mass profilesof galaxies. We demonstrate that compressing the light distribution of agalaxy along the line of sight produces approximately the same signaturein the line-of-sight velocity profiles as radial anisotropy. Inparticular, fitting spherically symmetric dynamical models to apparentlyround, isotropic face-on flattened galaxies leads to a spurious biastowards radial orbits in the models, especially if the galaxy has a weakface-on stellar disc. Such face-on stellar discs could plausibly be thecause of the radial anisotropy found in spherical models of intermediateluminosity ellipticals such as NGC 2434, 3379 and 6703. In the light ofthis result, we use simple dynamical models to constrain the outer massprofiles of a sample of 18 round, early-type galaxies. The galaxiesfollow a Tully-Fisher relation parallel to that for spiral galaxies, butfainter by at least 0.8mag (I-band) for a given mass. The most luminousgalaxies show clear evidence for the presence of a massive dark halo,but the case for dark haloes in fainter galaxies is more ambiguous. Wediscuss the observations that would be required to resolve thisambiguity.

The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances
We report data for I-band surface brightness fluctuation (SBF)magnitudes, (V-I) colors, and distance moduli for 300 galaxies. Thesurvey contains E, S0, and early-type spiral galaxies in the proportionsof 49:42:9 and is essentially complete for E galaxies to Hubblevelocities of 2000 km s-1, with a substantial sampling of Egalaxies out to 4000 km s-1. The median error in distancemodulus is 0.22 mag. We also present two new results from the survey.(1) We compare the mean peculiar flow velocity (bulk flow) implied byour distances with predictions of typical cold dark matter transferfunctions as a function of scale, and we find very good agreement withcold, dark matter cosmologies if the transfer function scale parameterΓ and the power spectrum normalization σ8 arerelated by σ8Γ-0.5~2+/-0.5. Deriveddirectly from velocities, this result is independent of the distributionof galaxies or models for biasing. This modest bulk flow contradictsreports of large-scale, large-amplitude flows in the ~200 Mpc diametervolume surrounding our survey volume. (2) We present adistance-independent measure of absolute galaxy luminosity, N and showhow it correlates with galaxy properties such as color and velocitydispersion, demonstrating its utility for measuring galaxy distancesthrough large and unknown extinction. Observations in part from theMichigan-Dartmouth-MIT (MDM) Observatory.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Κάμινος
Right ascension:03h36m03.20s
Declination:-35°26'26.0"
Aparent dimensions:3.236′ × 3.09′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 1379
HYPERLEDA-IPGC 13299

→ Request more catalogs and designations from VizieR