Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 1377



Upload your image

DSS Images   Other Images

Related articles

Eridanus - a supergroup in the local Universe?
We examine a possible supergroup in the direction of the Eridanusconstellation using 6dF Galaxy Survey second data release (6dFGS DR2)positions and velocities together with Two-Micron All-Sky Survey andHyper-Lyon-Meudon Extragalactic DAtabase photometry. We perform afriends-of-friends analysis to determine which galaxies are associatedwith each substructure before examining the properties of theconstituent galaxies. The overall structure is made up of threeindividual groups that are likely to merge to form a cluster of mass ~7× 1013Msolar. We conclude that thisstructure is a supergroup. We also examine the colours, morphologies andluminosities of the galaxies in the region with respect to their localprojected surface density. We find that the colours of the galaxiesredden with increasing density, the median luminosities are brighterwith increasing environmental density and the morphologies of thegalaxies show a strong morphology-density relation. The colours andluminosities of the galaxies in the supergroup are already similar tothose of galaxies in clusters; however, the supergroup contains morelate-type galaxies, consistent with its lower projected surface density.Due to the velocity dispersion of the groups in the supergroup, whichare lower than those of clusters, we conclude that the properties of theconstituent galaxies are likely to be a result of merging orstrangulation processes in groups outlying this structure.

The Opaque Nascent Starburst in NGC 1377: Spitzer SINGS Observations
We analyze extensive data on NGC 1377 from the Spitzer Infrared NearbyGalaxies Survey (SINGS). Within the category of nascent starbursts thatwe previously selected as having infrared-to-radio continuum ratios inlarge excess of the average and containing hot dust, NGC 1377 has thelargest infrared excess yet measured. Optical imaging reveals amorphological distortion suggestive of a recent accretion event.Infrared spectroscopy reveals a compact and opaque source dominated by ahot, self-absorbed continuum (τ~20 in the 10 μm silicate band).We provide physical evidence against nonstellar activity being theheating source. H II regions are detected through the single [Ne II]line, probing <1% of the ionizing radiation. Not only is the opticaldepth in different gas and dust phases very high, but >85% ofionizing photons are suppressed by dust. The only other detectedemission features are molecular hydrogen lines, arguably excited mainlyby shocks, besides photodissociation regions, and weak aromatic bands.The new observations support our interpretation in terms of an extremelyyoung starburst (<1 Myr). More generally, galaxies deficient in radiosynchrotron emission are likely observed within a few Myr of the onsetof a starburst and after a long quiescence, prior to the replenishmentof the interstellar medium with cosmic rays. The similar infrared-radioproperties of NGC 1377 and some infrared-luminous galaxies suggest thatNGC 1377 constitutes an archetype that will be useful to betterunderstand starburst evolution. Although rare locally because observedin a brief evolutionary stage, nascent starbursts may represent anonnegligible fraction of merger-induced starbursts that dominate deepinfrared counts. Since they differ dramatically from usual starbursttemplates, they have important consequences for the interpretation ofdeep surveys.

Mid-Infrared Spectral Diagnostics of Nuclear and Extranuclear Regions in Nearby Galaxies
Mid-infrared diagnostics are presented for a large portion of theSpitzer Infrared Nearby Galaxies Survey (SINGS) sample plus archivaldata from ISO and Spitzer. The SINGS data set includes low- andhigh-resolution spectral maps and broadband imaging in the infrared forover 160 nuclear and extranuclear regions within 75 nearby galaxiesspanning a wide range of morphologies, metallicities, luminosities, andstar formation rates. Our main result is that these mid-infrareddiagnostics effectively constrain a target's dominant power source. Thecombination of a high-ionization line index and PAH strength serves asan efficient discriminant between AGNs and star-forming nuclei,confirming progress made with ISO spectroscopy on starbursting andultraluminous infrared galaxies. The sensitivity of Spitzer allows us toprobe fainter nuclear and star-forming regions within galaxy disks. Wefind that both star-forming nuclei and extranuclear regions stand apartfrom nuclei that are powered by Seyfert or LINER activity. In fact, weidentify areas within four diagnostic diagrams containing >90%Seyfert/LINER nuclei or >90% H II regions/H II nuclei. We also findthat, compared to starbursting nuclei, extranuclear regions typicallyseparate even further from AGNs, especially for low-metallicityextranuclear environments. In addition, instead of the traditionalmid-infrared approach to differentiating between AGNs and star-formingsources that utilizes relatively weak high-ionization lines, we showthat strong low-ionization cooling lines of X-ray-dominated regions like[Si II] 34.82 μm can alternatively be used as excellentdiscriminants. Finally, the typical target in this sample showsrelatively modest interstellar electron density (~400 cm-3)and obscuration (AV~1.0 mag for a foreground screen),consistent with a lack of dense clumps of highly obscured gas and dustresiding in the emitting regions.

Infrared 3-4 μm Spectroscopy of Infrared Luminous Galaxies with Possible Signatures of Obscured Active Galactic Nuclei
We present the results of infrared 2.8-4.1 μm (L-band) spectroscopyof nearby infrared luminous galaxies with possible signatures ofdust-obscured active galactic nuclei (AGNs) in data at otherwavelengths. The samples are chosen to include sources with a radioexcess relative to far-infrared emission, strong absorption features inmid-infrared 5-11.5 μm spectra, unusually weak [C II] 158 μmemission relative to the far-infrared continuum, and radio galaxiesclassified optically as narrow-line objects. Our aim is to investigatewhether the signatures of possible obscured AGNs can be detected in ourL-band spectra based on the strengths of emission and absorptionfeatures. Six of nine observed sources clearly show 3.3 μm polycyclicaromatic hydrocarbon emission features, a good starburst indicator. Anabsorption feature at 3.1 μm due to ice-covered dust is detected inIRAS 04154+1755 and IRAS 17208-0014. The signature of a barecarbonaceous dust absorption feature at 3.4 μm is seen in NGC 1377.Our L-band spectra reveal strong signatures of obscured AGNs in allthree optical Seyfert 2 galaxies (IRAS 04154+1755, Cygnus A, and 3C 234)and two galaxies classified optically as non-Seyfert galaxies (NGC 828and NGC 1377). Among the remaining optical non-Seyfert galaxies, IRAS17208-0014 might also show a buried AGN signature, whereas no explicitAGN evidence is seen in the L-band spectra of the mid-infraredabsorption feature source IRAS 15250+3609 and two weak [C II] emitters,IC 860 and CGCG 1510.8+0725.Based in part on data collected at the Subaru Telescope, which isoperated by the National Astronomical Observatory of Japan.

Radio Continuum and Far-infrared Emission from the Galaxies in the Eridanus Group
The Eridanus galaxies follow the well-known radio-FIR correlation. Themajority (70%) of these galaxies have their star formation rates belowthat of the Milky Way. The galaxies that have a significant excess ofradio emission are identified as low luminosity AGNs based on theirradio morphologies obtained from the GMRT observations. There are nopowerful AGNs (L20 cm>1023WHz-1) in the group. The twomost far-infrared and radio luminous galaxies in the group have opticaland HI morphologies suggestive of recent tidal interactions. TheEridanus group also has two far-infrared luminous but radio-deficientgalaxies. It is believed that these galaxies are observed within a fewMyr of the onset of an intense star formation episode after beingquiescent for at least a 100 Myr. The upper end of the radio luminositydistribution of the Eridanus galaxies (L20 cm1022WHz-1) isconsistent with that of the field galaxies, other groups, and late-typegalaxies in nearby clusters.

GMRT HI Observations of the Eridanus Group of Galaxies I.
The GMRT HI 21cm-line observations of galaxies in the Eridanus group arepresented. The Eridanus group, at a distance of ~23 Mpc, is a loosegroup of ~200 galaxies. The group extends to more than 10 Mpc inprojection. The velocity dispersion of the galaxies in the group is ~240km s-1. The galaxies are clustered into different sub-groups. Theoverall population mix of the group is 30% (E + S0) and 70% (Sp + Irr).The observations of 57 Eridanus galaxies were carried out with the GMRTfor ~ 200 h. HI emission was detected from 31 galaxies. The channel rmsof ~1 mJy beam-1 was achieved for most of the image-cubes made with 4 hof data. The corresponding HI column density sensitivity (3σ) is~1 × 1020 cm-2 for a velocity-width of ~ 13.4 km s-1.The 3σ detection lss surface densities, HI disk parameters and HIrotation curves are presented. The velocity fields are analysedseparately for the approaching and the receding sides of the galaxies.These data will be used to study the HI and the radio continuumproperties, the Tully-Fisher relations, the dark matter halos, and thekinematical and HI lopsidedness in galaxies.

Infrared Spectral Energy Distributions of Nearby Galaxies
The Spitzer Infrared Nearby Galaxies Survey (SINGS) is carrying out acomprehensive multiwavelength survey on a sample of 75 nearby galaxies.The 1-850 μm spectral energy distributions (SEDs) are presented usingbroadband imaging data from Spitzer, 2MASS, ISO, IRAS, and SCUBA. Theinfrared colors derived from the globally integrated Spitzer data aregenerally consistent with the previous generation of models that weredeveloped using global data for normal star-forming galaxies, althoughsignificant deviations are observed. Spitzer's excellent sensitivity andresolution also allow a detailed investigation of the infrared SEDs forvarious locations within the three large, nearby galaxies NGC 3031(M81), NGC 5194 (M51), and NGC 7331. A wide variety of spectral shapesis found within each galaxy, especially for NGC 3031, the closest of thethree targets and thus the galaxy for which the smallest spatial scalescan be explored. Strong correlations exist between the local starformation rate and the infrared colors fν(70μm)/fν(160 μm) and fν(24μm)/fν(160 μm), suggesting that the 24 and 70 μmemission are useful tracers of the local star formation activity level.Preliminary evidence indicates that variations in the 24 μm emission,and not variations in the emission from polycyclic aromatic hydrocarbonsat 8 μm, drive the variations in the fν(8.0μm)/fν(24 μm) colors within NGC 3031, NGC 5194, andNGC 7331. If the galaxy-to-galaxy variations in SEDs seen in our sampleare representative of the range present at high redshift, thenextrapolations of total infrared luminosities and star formation ratesfrom the observed 24 μm flux will be uncertain at the factor of 5level (total range). The corresponding uncertainties using theredshifted 8.0 μm flux (e.g., observed 24 μm flux for a z=2source) are factors of 10-20. Considerable caution should be used wheninterpreting such extrapolated infrared luminosities.

Simulating the Spitzer Mid-Infrared Color-Color Diagrams
We use a simple parameterization of the mid-IR spectra of a wide rangeof galaxy types in order to predict their distribution in the InfraredArray Camera (IRAC) 3.6, 4.5, 5.8, and 8.0 μm and MultibandPhotometer for Spitzer 24 μm color-color diagrams. We distinguishthree basic spectral types by the energetically dominant component inthe 3-12 μm regime: stellar-dominated, polycyclic aromatichydrocarbon (PAH)-dominated, and continuum-dominated. We use a Markovchain Monte Carlo approach to arrive at a more systematic and robustrepresentation of the mid-IR spectra of galaxies than do moretraditional approaches. We find that IRAC color-color plots are wellsuited to distinguishing the above spectral types, while the addition of24 μm data allows us to suggest practical three-color cuts thatpreferentially select higher redshift sources of a specific type. Wecompare our simulations with the color-color plot obtained by theSpitzer First Look Survey and find reasonable agreement. Lastly, wediscuss other applications as well as future directions for this work.

Classification of Spectra from the Infrared Space Observatory PHT-S Database
We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

Polycyclic Aromatic Hydrocarbons as a Tracer of Star Formation?
Infrared (IR) emission features at 3.3, 6.2, 7.7, 8.6, and 11.3 μmare generally attributed to IR fluorescence from (mainly)far-ultraviolet (FUV) pumped large polycyclic aromatic hydrocarbon (PAH)molecules. As such, these features trace the FUV stellar flux and arethus a measure of star formation. We examined the IR spectralcharacteristics of Galactic massive star-forming regions and of normaland starburst galaxies, as well as active galactic nuclei (AGNs) andultraluminous infrared galaxies (ULIRGs). The goal of this study is toanalyze whether PAH features are a good qualitative and/or quantitativetracer of star formation, and hence to evaluate the application of PAHemission as a diagnostic tool in order to identify the dominantprocesses contributing to the infrared emission from Seyfert galaxiesand ULIRGs. We develop a new mid-infrared (MIR)/far-infrared (FIR)diagnostic diagram based on our Galactic sample and compare it to thediagnostic tools of Genzel and coworkers and Laurent and coworkers, withthese diagnostic tools also applied to our Galactic sample. This MIR/FIRdiagnostic is derived from the FIR normalized 6.2 μm PAH flux and theFIR normalized 6.2 μm continuum flux. Within this diagram, theGalactic sources form a sequence spanning a range of 3 orders ofmagnitude in these ratios, ranging from embedded compact H II regions toexposed photodissociation regions (PDRs) and the (diffuse) interstellarmedium (ISM). However, the variation in the 6.2 μm PAHfeature-to-continuum ratio is relative small. Comparison of ourextragalactic sample with our Galactic sources revealed an excellentresemblance of normal and starburst galaxies to exposed PDRs. WhileSeyfert 2 galaxies coincide with the starburst trend, Seyfert 1 galaxiesare displaced by at least a factor of 10 in 6.2 μm continuum flux, inaccordance with general orientation-dependent unification schemes forAGNs. ULIRGs show a diverse spectral appearance. Some show a typical AGNhot dust continuum. More, however, either are starburst-like or showsigns of strong dust obscuration in the nucleus. One characteristic ofthe ULIRGs also seems to be the presence of more prominent FIR emissionthan either starburst galaxies or AGNs. We discuss the observedvariation in the Galactic sample in view of the evolutionary state andthe PAH/dust abundance and discuss the use of PAHs as quantitativetracers of star formation activity. Based on these investigations, wefind that PAHs may be better suited as a tracer of B stars, whichdominate the Galactic stellar energy budget, than as a tracer of massivestar formation (O stars).

Mid-infrared spectral evidence for a luminous dust enshrouded source in Arp 220
We have re-analyzed the 6-12 μm ISO spectrum of the ultra-luminousinfrared galaxy Arp 220 with the conclusion that it is not consistentwith that of a scaled up version of a typical starburst. Instead, bothtemplate fitting with spectra of the galaxies NGC 4418 and M 83 and withdust models suggest that it is best represented by combinations of atypical starburst component, exhibiting PAH emission features, and aheavily absorbed dust continuum which contributes ˜40% of the 6-12μm flux and likely dominates the luminosity. Of particularsignificance relative to previous studies of Arp 220 is the fact thatthe emission feature at 7.7 μm comprises both PAH emission and abroader component resulting from ice and silicate absorption against aheavily absorbed continuum. Extinction to the PAH emitting source,however, appears to be relatively low. We tentatively associate the PAHemitting and heavily dust/ice absorbed components with the diffuseemission region and the two compact nuclei respectively identified bySoifer et al. (\cite{Soifer02}) in their higher spatial resolution 10μm study. Both the similarity of the absorbed continuum with that ofthe embedded Galactic protostars and results of the dust models implythat the embedded source(s) in Arp 220 could be powered by, albeitextremely dense, starburst activity. Due to the high extinction, it isnot possible with the available data to exclude that AGN(s) alsocontribute some or all of the observed luminosity. In this case,however, the upper limit measured for its hard X-ray emission wouldrequire Arp 220 to be the most highly obscured AGN known.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the United Kingdom) and with the participation of ISASand NASA.

SINGS: The SIRTF Nearby Galaxies Survey
The SIRTF Nearby Galaxy Survey is a comprehensive infrared imaging andspectroscopic survey of 75 nearby galaxies. Its primary goal is tocharacterize the infrared emission of galaxies and their principalinfrared-emitting components, across a broad range of galaxy propertiesand star formation environments. SINGS will provide new insights intothe physical processes connecting star formation to the interstellarmedium properties of galaxies and provide a vital foundation forunderstanding infrared observations of the distant universe andultraluminous and active galaxies. The galaxy sample and observingstrategy have been designed to maximize the scientific and archivalvalue of the data set for the SIRTF user community at large. The SIRTFimages and spectra will be supplemented by a comprehensivemultiwavelength library of ancillary and complementary observations,including radio continuum, H I, CO, submillimeter, BVRIJHK, Hα,Paα, ultraviolet, and X-ray data. This paper describes the mainastrophysical issues to be addressed by SINGS, the galaxy sample and theobserving strategy, and the SIRTF and other ancillary data products.

Nascent Starbursts in Synchrotron-deficient Galaxies with Hot Dust
Three nearby galaxies that have abnormally high infrared-to-radiocontinuum ratios, NGC 1377, IC 1953, and NGC 4491, are investigated witha view to understanding the physical origin of their peculiarity. Wereview the existing data and present new radio continuum measurementsalong with near-infrared integral-field spectroscopy and molecular gasobservations. The three galaxies have low luminosities butstarburst-like infrared colors; in NGC 1377, no synchrotron emission isdetected at any wavelength; in IC 1953, the observed synchrotroncomponent is attributable to the spiral disk alone and is lacking in thecentral regions; and the radio spectrum of NGC 4491 is unusually flat.We also compare and contrast them with NGC 4418, a heavily extinguishedgalaxy that shares some attributes with them. After examining variousscenarios, we conclude that these galaxies are most likely observedwithin a few megayears of the onset of an intense star formation episodeafter being quiescent for at least ~100 Myr. This starburst, whileheating the dust, has not produced optical signatures or a normal amountof cosmic rays yet. We briefly discuss the statistics of such galaxiesand what they imply for star formation surveys.Based on observations with the 100 m telescope of theMax-Planck-Institut für Radioastronomie at Effelsberg.

The Bivariate Luminosity-Color Distribution of IRAS Galaxies and Implications for the High-Redshift Universe
We present a characterization of the local luminosity-color bivariatedistribution of IRAS galaxies from the 1.2 Jy sample, selected at 60μm. The R(60, 100) infrared (IR) color is used as the bestsingle-parameter description of the IR spectral energy distribution ofgalaxies. We derive an analytical form of the distribution and use it toconstrain the effect of the IR color distribution on evolution modelsfor high-redshift, far-infrared (FIR)-luminous galaxies. Our adoptedevolution retains the locally observed correlation between luminosityand color, such that the larger characteristic luminosities at higherredshift have a warmer characteristic color. The width of the colordistribution at a given luminosity remains constant for all redshifts.We demonstrate that there is the potential for both hotter and coldersources to be missed in cosmological surveys. An evolving bivariateluminosity function coupled with the cold-source bias ofsubmillimeter-selected surveys suggests the existence of a largepopulation of cold sources appearing in such surveys. Likewise, ahot-source bias for most SIRTF wave bands together with a bivariatemodel suggests an excess of hot sources being selected. We test theevolutionary form against available data for higher redshift, FIRgalaxies. The data do not reveal evidence for any strong evolution inthe characteristic luminosity-color distribution as a function ofredshift over 0

Redshift-Distance Survey of Early-Type Galaxies: Spectroscopic Data
We present central velocity dispersions and Mg2 line indicesfor an all-sky sample of ~1178 elliptical and S0 galaxies, of which 984had no previous measures. This sample contains the largest set ofhomogeneous spectroscopic data for a uniform sample of ellipticalgalaxies in the nearby universe. These galaxies were observed as part ofthe ENEAR project, designed to study the peculiar motions and internalproperties of the local early-type galaxies. Using 523 repeatedobservations of 317 galaxies obtained during different runs, the dataare brought to a common zero point. These multiple observations, takenduring the many runs and different instrumental setups employed for thisproject, are used to derive statistical corrections to the data and arefound to be relatively small, typically <~5% of the velocitydispersion and 0.01 mag in the Mg2 line strength. Typicalerrors are about 8% in velocity dispersion and 0.01 mag inMg2, in good agreement with values published elsewhere.

Companions of Bright Barred Shapley-Ames Galaxies
Companion galaxy environment for a subset of 78 bright and nearby barredgalaxies from the Shapley-Ames Catalog is presented. Among the spiralbarred galaxies, there are Seyfert galaxies, galaxies with circumnuclearstructures, galaxies not associated with any large-scale galaxy cloudstructure, galaxies with peculiar disk morphology (crooked arms), andgalaxies with normal disk morphology; the list includes all Hubbletypes. The companion galaxy list includes the number of companiongalaxies within 20 diameters, their Hubble type, and projectedseparation distance. In addition, the companion environment was searchedfor four known active spiral galaxies, three of them are Seyfertgalaxies, namely, NGC 1068, NGC 1097, and NGC 5548, and one is astarburst galaxy, M82. Among the results obtained, it is noted that theonly spiral barred galaxy classified as Seyfert 1 in our list has nocompanions within a projected distance of 20 diameters; six out of 10Seyfert 2 bar galaxies have no companions within 10 diameters, six outof 10 Seyfert 2 galaxies have one or more companions at projectedseparation distances between 10 and 20 diameters; six out of 12 galaxieswith circumnuclear structures have two or more companions within 20diameters.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

Redshift-Distance Survey of Early-Type Galaxies: Circular-Aperture Photometry
We present R-band CCD photometry for 1332 early-type galaxies, observedas part of the ENEAR survey of peculiar motions using early-typegalaxies in the nearby universe. Circular apertures are used to tracethe surface brightness profiles, which are then fitted by atwo-component bulge-disk model. From the fits, we obtain the structuralparameters required to estimate galaxy distances using theDn-σ and fundamental plane relations. We find thatabout 12% of the galaxies are well represented by a pure r1/4law, while 87% are best fitted by a two-component model. There are 356repeated observations of 257 galaxies obtained during different runsthat are used to derive statistical corrections and bring the data to acommon system. We also use these repeated observations to estimate ourinternal errors. The accuracy of our measurements are tested by thecomparison of 354 galaxies in common with other authors. Typical errorsin our measurements are 0.011 dex for logDn, 0.064 dex forlogre, 0.086 mag arcsec-2 for<μe>, and 0.09 for mRC,comparable to those estimated by other authors. The photometric datareported here represent one of the largest high-quality and uniformall-sky samples currently available for early-type galaxies in thenearby universe, especially suitable for peculiar motion studies.Based on observations at Cerro Tololo Inter-American Observatory (CTIO),National Optical Astronomy Observatory, which is operated by theAssociation of Universities for Research in Astronomy, Inc., undercooperative agreement with the National Science Foundation (NSF);European Southern Observatory (ESO); Fred Lawrence Whipple Observatory(FLWO); and the MDM Observatory on Kitt Peak.

Redshift-Distance Survey of Early-Type Galaxies. I. The ENEARc Cluster Sample
This paper presents data on the ENEARc subsample of the larger ENEARsurvey of nearby early-type galaxies. The ENEARc galaxies belong toclusters and were specifically chosen to be used for the construction ofa Dn-σ template. The ENEARc sample includes newmeasurements of spectroscopic and photometric parameters (redshift,velocity dispersion, line index Mg2, and the angular diameterdn), as well as data from the literature. New spectroscopicdata are given for 229 cluster early-type galaxies, and new photometryis presented for 348 objects. Repeat and overlap observations withexternal data sets are used to construct a final merged catalogconsisting of 640 early-type galaxies in 28 clusters. Objectivecriteria, based on catalogs of groups of galaxies derived from completeredshift surveys of the nearby universe, are used to assign galaxies toclusters. In a companion paper, these data are used to construct thetemplate Dn-σ distance relation for early-typegalaxies, which has been used to estimate galaxy distances and derivepeculiar velocities for the ENEAR all-sky sample. Based on observationsat Complejo Astronomico El Leoncito, operated under agreement betweenthe Consejo Nacional de Investigaciones Científicas de laRepública Argentina and the National Universities of La Plata,Córdoba, and San Juan; Cerro Tololo Inter-American Observatory,National Optical Astronomical Observatory, which is operated by theAssociation of Universities for Research in Astronomy, Inc., undercooperative agreement with the National Science Foundation; the EuropeanSouthern Observatory (ESO), partially under the ESO-ON agreement; theFred Lawrence Whipple Observatory; the Observatório do Pico dosDias, operated by the Laboratório Nacional de Astrofísicaand the MDM Observatory at Kitt Peak.

The K-band luminosity function of nearby field galaxies
We present a measurement of the K-band luminosity function (LF) of fieldgalaxies obtained from near-infrared imaging of a sample of 345 galaxiesselected from the Stromlo-APM Redshift Survey. The LF is reasonably wellfitted over the 10-mag range -26<=MK<=-16 by aSchechter function with parameters α=-1.16+/-0.19,M*=-23.58+/-0.42 and φ*=0.012+/-0.008Mpc-3, assuming aHubble constant of H0=100kms-1Mpc-1. Wehave also estimated the LF for two subsets of galaxies subdivided by theequivalent width of the Hα emission line atEW(Hα)=10Å. There is no significant difference in LF shapebetween the two samples, although there is a hint (~1σsignificance) that emission-line galaxies (ELGs) have M* roughly 1magfainter than non-ELGs. Contrary to the optical LF, there is nodifference in faint-end slope α between the two samples.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

Compact Radio Emission from Warm Infrared Galaxies
In this paper, we present a comparison between the optical spectroscopicdata and the incidence of compact radio emission for a sample of 60 warminfrared galaxies. We find that 80% of optically classified activegalactic nucleus (AGN)-type galaxies contain compact radio sources,while 37% of optically classified starburst galaxies contain compactradio sources. The compact radio luminosity shows a bimodaldistribution, indicating two populations in our sample. The majority ofthe higher radio luminosity class (L>104Lsolar) are AGNs, while the majority of the lower radioluminosity class (L<104 Lsolar) are starbursts.The compact radio emission in the starburst galaxies may be due toeither obscured AGNs or complexes of extremely luminous supernovae suchas that seen in Arp 220. The incidence of optically classified AGNsincreases with increasing far-infrared (FIR) luminosity. Using FIRcolor-color diagrams, we find that globally the energetics of 92% of thegalaxies in our sample are dominated by starburst activity, including60% of galaxies that we find to contain AGNs on the basis of theiroptical classification. The remainder are energetically dominated bytheir AGNs in the infrared. For starburst galaxies, electron densityincreases with dust temperature, consistent with the merger model forinfrared galaxies.

ISO observations of a sample of 60 mu m peaker galaxies
The sample of IRAS galaxies with spectral energy distributions that peaknear 60 mu m are called Sixty Micron Peakers (SMPs or 60PKs). Theirgenerally peculiar and amorphous morphologies, hot dust and lack of acirrus component have been interpreted as being indicative of a recentinteraction/merger event. Mid-infrared spectra of eight SMPs, obtainedwith ISOPHOT-S in the ~ 2-11 mu m band are presented. Four of theobserved sources are H II region-like (H2) galaxies, three are Seyfert 2and one is unclassified. Emission attributed to Polycyclic AromaticHydrocarbons (PAHs) at 6.2 mu m, 7.7 mu m and 8.6 mu m is ubiquitous inthe spectra. The PHOT-S spectrum of the H2 galaxy IRAS23446+1519 exhibits a bright 11.04 mu m line and an 8.6 mu mfeature of comparable size to its 7.7 mu m feature. [S IV] emission at10.5 mu m was detected in three of four H2 galaxies and in one Seyfert 2galaxy. The ratio of the 7.7 mu m PAH feature to the continuum at 7.7 mum (PAH L/C) divides the eight SMPs at a ratio greater than 0.8 for H2and less than 0.8 for Seyfert galaxies. An anti-correlation between PAHL/C and the ratio of the continuum flux at 5.9 mu m to the flux at 60 mum is found, similar to that found in ultraluminous infrared galaxies.Silicate absorption at approximately 9.7 mu m was observed in theSeyfert 2 galaxy, IRAS 04385-0828 and inIRAS 03344-2103. The previously unclassified SMPgalaxy IRAS 03344-2103 is probably a Seyfert 2.

Galaxy coordinates. II. Accurate equatorial coordinates for 17298 galaxies
Using images of the Digitized Sky Survey we measured coodinates for17298 galaxies having poorly defined coordinates. As a control, wemeasured with the same method 1522 galaxies having accurate coordinates.The comparison with our own measurements shows that the accuracy of themethod is about 6 arcsec on each axis (RA and DEC).

Compact radio emission in 60-μm peaker galaxies
We present radio interferometric observations of a well-defined sampleof IRAS galaxies with warm far-infrared colours - 60-μm peakers(60PKs). We find the surprising result that the core radio power ofSeyfert 60PKs is between those of `normal' Seyfert 2 galaxies and radioellipticals, and follows the same relationship with respect to total andextended radio emission as low- and high-power radio galaxies. This isconsistent with the suggestion that 60PKs represent nascent radioelliptical galaxies of low to intermediate power. The compact radiocores (assumed to be associated with the AGN core) in 60PKs containtypically ~37 per cent of the total radio flux of the galaxy (generallyattributed to synchrotron radiation from cosmic ray electronsaccelerated by distributed star formation in the galaxy). If this resultis true more generally, then it implies that the compact radio core inan active galaxy `knows' about the rate of star formation in the galaxy.Alternatively, the presence of a `radio excess' for Seyfert 60PKssuggests that the extended radio flux may be attributed to radio jetsrather than star formation, which explains its relationship with theradio core emission. Taking into consideration the sensitivity limit forthe Parkes-Tidbinbilla Interferometer, we find that none of the 60PKsclassified as starburst by optical spectroscopy is detected, while over90 per cent of the Seyfert 60PKs contain compact radio cores. This leadsus to conclude that the starburst 60PKs are not just heavilydust-obscured AGN. Although we have small-number statistics, theseresults are consistent with previous surveys that indicate that theoptical spectroscopic classification of emission-line galaxiesdiscriminates between galaxies that contain high brightness temperatureradio cores and those that do not. The data presented in this paper areinsufficient to determine if there is an evolutionary relationshipbetween the starburst and Seyfert classes of 60PKs.

The Pico DOS Dias Survey Starburst Galaxies
We discuss the nature of the galaxies found in the Pico dos Dias Survey(PDS) for young stellar objects. The PDS galaxies were selected from theIRAS Point Source catalog. They have flux density of moderate or highquality at 12, 25, and 60 μm and spectral indices in the ranges -3.00<= alpha(25, 12) <= + 0.35 and -2.50 <= alpha(60, 25) <=+0.85. These criteria allowed the detection of 382 galaxies, which are amixture of starburst and Seyfert galaxies. Most of the PDS Seyfertgalaxies are included in the catalog of warm IRAS sources by de Grijp etal. The remaining galaxies constitute a homogeneous sample of luminous[log F (L_B/L_ȯ) = 9.9 +/- 0.4] starburst galaxies, 67% of whichwere not recognized as such before. The starburst nature of the PDSgalaxies is established by comparing their L_IR/L_B ratios and IRAScolors with a sample of emission-line galaxies from the literaturealready classified as starburst galaxies. The starburst galaxies show anexcess of FIR luminosity, and their IRAS colors are significantlydifferent from those of Seyfert galaxies-99% of the starburst galaxiesin our sample have a spectral index alpha(60, 25) < -1.9. As opposedto Seyfert galaxies, very few PDS starbursts are detected in X-rays. Inthe infrared, the starburst galaxies form a continuous sequence withnormal galaxies. But they generally can be distinguished from normalgalaxies by their spectral index alpha(60, 25) > -2.5. This colorcutoff also marks a change in the dominant morphologies of the galaxies:the normal IRAS galaxies are preferentially late-type spirals (Sb andlater), while the starbursts are more numerous among early-type spirals(earlier than Sbc). This preference of starbursts for early-type spiralsis not new, but a trait of the massive starburst nucleus galaxies(Coziol et al.). As in other starburst nucleus galaxy samples, the PDSstarbursts show no preference for barred galaxies. No difference isfound between the starbursts detected in the FIR and those detected onthe basis of UV excess. The PDS starburst galaxies represent the FIRluminous branch of the UV-bright starburst nucleus galaxies, with meanFIR luminosity log (L_IR/L_ȯ) = 10.3 +/- 0.5 and redshifts smallerthan 0.1. They form a complete sample limited in flux in the FIR at 2 x10^-10 ergs cm^-2 s^-1.

The Southern Sky Redshift Survey
We report redshifts, magnitudes, and morphological classifications for5369 galaxies with m_B <= 15.5 and for 57 galaxies fainter than thislimit, in two regions covering a total of 1.70 sr in the southerncelestial hemisphere. The galaxy catalog is drawn primarily from thelist of nonstellar objects identified in the Hubble Space TelescopeGuide Star Catalog (GSC). The galaxies have positions accurate to ~1"and magnitudes with an rms scatter of ~0.3 mag. We compute magnitudes(m_SSRS2) from the relation between instrumental GSC magnitudes and thephotometry by Lauberts & Valentijn. From a comparison with CCDphotometry, we find that our system is homogeneous across the sky andcorresponds to magnitudes measured at the isophotal level ~26 magarcsec^-2. The precision of the radial velocities is ~40 km s^-1, andthe redshift survey is more than 99% complete to the m_SSRS2 = 15.5 maglimit. This sample is in the direction opposite that of the CfA2; incombination the two surveys provide an important database for studies ofthe properties of galaxies and their large-scale distribution in thenearby universe. Based on observations obtained at Cerro TololoInter-American Observatory, National Optical Astronomy Observatories,operated by the Association of Universities for Research in Astronomy,Inc., under cooperative agreement with the National Science Foundation;Complejo Astronomico El Leoncito, operated under agreement between theConsejo Nacional de Investigaciones Científicas de laRepública Argentina and the National Universities of La Plata,Córdoba, and San Juan; the European Southern Observatory, LaSilla, Chile, partially under the bilateral ESO-ObservatórioNacional agreement; Fred Lawrence Whipple Observatory;Laboratório Nacional de Astrofísica, Brazil; and the SouthAfrican Astronomical Observatory.

Total magnitude, radius, colour indices, colour gradients and photometric type of galaxies
We present a catalogue of aperture photometry of galaxies, in UBVRI,assembled from three different origins: (i) an update of the catalogueof Buta et al. (1995) (ii) published photometric profiles and (iii)aperture photometry performed on CCD images. We explored different setsof growth curves to fit these data: (i) The Sersic law, (ii) The net ofgrowth curves used for the preparation of the RC3 and (iii) A linearinterpolation between the de Vaucouleurs (r(1/4) ) and exponential laws.Finally we adopted the latter solution. Fitting these growth curves, wederive (1) the total magnitude, (2) the effective radius, (3) the colourindices and (4) gradients and (5) the photometric type of 5169 galaxies.The photometric type is defined to statistically match the revisedmorphologic type and parametrizes the shape of the growth curve. It iscoded from -9, for very concentrated galaxies, to +10, for diffusegalaxies. Based in part on observations collected at the Haute-ProvenceObservatory.

Near-infrared surface photometry of `Sixty Micron Peaker' galaxies
Near-infrared (NIR) photometry of a sample of 31 `warm' IRAS galaxieswhose spectral energy distribution peaks in the 60-μm band - SixtyMicron Peakers - is presented. Radial surface brightness profiles revealthat most are dominated by a bulge component in the NIR, indicative ofearly-type host galaxies. The distribution of the bulge effective radiusin the K band is similar to LINERS and starbursts, but very differentfrom optically selected Seyferts. The J, H and K host-galaxy colours,however, are not typical of normal early-type galaxies; they appear tocontain significant dust and/or star formation. The sample galaxiesclassified as starbursts are well fitted by a single r^1/4 profile anddo not require a buried active nucleus, while most of the Seyfertgalaxies do require an added nuclear point source to fit the lightprofile. J-K colour profiles and two-colour JHK diagrams reveal that thenuclei are quite red compared to the host galaxies, consistent with thepicture of substantial centrally concentrated hot dust.Model-independent parameters, such as concentration index, effectivesurface brightness and effective radius, are presented for the samplegalaxies. No apparent correlations are found with respect to nuclearoptical spectroscopic classification. The results of this NIR studysupport the hypothesis that Sixty Micron Peakers represent galaxies thathave recently undergone an interaction which has funnelled gas and dustto the central regions and resulted in a host galaxy with anelliptical-like light profile.

The Stromlo-APM Redshift Survey. IV. The Redshift Catalog
The Stromlo-APM Redshift Survey consists of 1797 galaxies with b_J_ <17.15 selected randomly at a rate of 1 in 20 from automated platemeasurement (APM) scans. The survey covers a solid angle of 1.3 sr (4300deg^2^) in the south Galactic cap. Redshifts have been measured for 1790(99.6%) of the galaxies. The median galaxy recession velocity is 15,300km s^-1^, and so the volume probed is V ~ 1.38 x 10^6^ h^-3^ Mpc^3^. Inthis paper we describe the construction of the redshift catalog andpresent the survey data.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:03h36m39.00s
Aparent dimensions:1.95′ × 0.912′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 1377

→ Request more catalogs and designations from VizieR