Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 1358



Upload your image

DSS Images   Other Images

Related articles

Local and Large-Scale Environment of Seyfert Galaxies
We present a three-dimensional study of the local (<=100h-1 kpc) and the large-scale (<=1 h-1 Mpc)environment of the two main types of Seyfert AGN galaxies. For thispurpose we use 48 Seyfert 1 galaxies (with redshifts in the range0.007<=z<=0.036) and 56 Seyfert 2 galaxies (with0.004<=z<=0.020), located at high galactic latitudes, as well astwo control samples of nonactive galaxies having the same morphological,redshift, and diameter size distributions as the corresponding Seyfertsamples. Using the Center for Astrophysics (CfA2) and Southern SkyRedshift Survey (SSRS) galaxy catalogs (mB~15.5) and our ownspectroscopic observations (mB~18.5), we find that within aprojected distance of 100 h-1 kpc and a radial velocityseparation of δv<~600 km s-1 around each of ourAGNs, the fraction of Seyfert 2 galaxies with a close neighbor issignificantly higher than that of their control (especially within 75h-1 kpc) and Seyfert 1 galaxy samples, confirming a previoustwo-dimensional analysis of Dultzin-Hacyan et al. We also find that thelarge-scale environment around the two types of Seyfert galaxies doesnot vary with respect to their control sample galaxies. However, theSeyfert 2 and control galaxy samples do differ significantly whencompared to the corresponding Seyfert 1 samples. Since the maindifference between these samples is their morphological typedistribution, we argue that the large-scale environmental differencecannot be attributed to differences in nuclear activity but rather totheir different type of host galaxies.

Spatially Resolved Narrow-Line Region Kinematics in Active Galactic Nuclei
We have analyzed Hubble Space Telescope spectroscopy of 24 nearby activegalactic nuclei (AGNs) to investigate spatially resolved gas kinematicsin the narrow-line region (NLR). These observations effectively isolatethe nuclear line profiles on less than 100 pc scales and are used toinvestigate the origin of the substantial scatter between the widths ofstrong NLR lines and the stellar velocity dispersion σ*of the host galaxy, a quantity that relates with substantially lessscatter to the mass of the central, supermassive black hole and moregenerally characterize variations in the NLR velocity field with radius.We find that line widths measured with STIS at a range of spatial scalessystematically underestimate both σ* and the line widthmeasured from ground-based observations, although they do havecomparably large scatter to the relation between ground-based NLR linewidth and σ*. There are no obvious trends in theresiduals when compared with a range of host galaxy and nuclearproperties. The widths and asymmetries of [O III] λ5007 and [SII] λλ6716, 6731 as a function of radius exhibit a widerange of behavior. Some of the most common phenomena are substantialwidth increases from the STIS to the large-scale, ground-based apertureand almost no change in line profile between the unresolved nuclearspectrum and ground-based measurements. We identify asymmetries in asurprisingly large fraction of low-ionization [S II] line profiles andseveral examples of substantial red asymmetries in both [O III] and [SII]. These results underscore the complexity of the circumnuclearmaterial that constitutes the NLR and suggest that the scatter in theNLR width and σ* correlation cannot be substantiallyreduced with a simple set of empirical relations.

Low-Luminosity Active Galaxies and Their Central Black Holes
Central black hole masses for 117 spiral galaxies representingmorphological stages S0/a through Sc and taken from the largespectroscopic survey of Ho et al. are derived using Ks-banddata from the Two Micron All Sky Survey. Black hole masses are foundusing a calibrated black hole-Ks bulge luminosity relation,while bulge luminosities are measured by means of a two-dimensionalbulge-disk decomposition routine. The black hole masses are correlatedagainst a variety of parameters representing properties of the nucleusand host galaxy. Nuclear properties such as line width (FWHM [N II]), aswell as emission-line ratios (e.g., [O III]/Hβ, [O I]/Hα, [NII]/Hα, and [S II]/Hα), show a very high degree ofcorrelation with black hole mass. The excellent correlation with linewidth supports the view that the emission-line gas is in virialequilibrium with either the black hole or bulge potential. The very goodemission-line ratio correlations may indicate a change in ionizingcontinuum shape with black hole mass in the sense that more massiveblack holes generate harder spectra. Apart from theinclination-corrected rotational velocity, no excellent correlations arefound between black hole mass and host galaxy properties. Significantdifferences are found between the distributions of black hole masses inearly-, mid-, and late-type spiral galaxies (subsamples A, B, and C) inthe sense that early-type galaxies have preferentially larger centralblack holes, consistent with observations that Seyfert galaxies arefound preferentially in early-type systems. The line width distributionsshow a marked difference among subsamples A, B, and C in the sense thatearlier type galaxies have larger line widths. There are also cleardifferences in line ratios between subsamples A+B and C that likely arerelated to the level of ionization in the gas. Finally, aKs-band Simien & de Vaucouleurs diagram shows excellentagreement with the original B-band relation, although there is a largedispersion at a given morphological stage.

On the X-ray, optical emission line and black hole mass properties of local Seyfert galaxies
We investigate the relation between X-ray nuclear emission, opticalemission line luminosities and black hole masses for a sample of 47Seyfert galaxies. The sample, which has been selected from the Palomaroptical spectroscopic survey of nearby galaxies (Ho et al. 1997a, ApJS,112, 315), covers a wide range of nuclear powers, from L2-10keV ~ 1043 erg/s down to very low luminosities(L2-10 keV ~ 1038 erg/s). Best available data fromChandra, XMM-Newton and, in a few cases, ASCA observations have beenconsidered. Thanks to the good spatial resolution available from theseobservations and a proper modeling of the various spectral components,it has been possible to obtain accurate nuclear X-ray luminosities notcontaminated by off-nuclear sources and/or diffuse emission. X-rayluminosities have then been corrected taking into account the likelycandidate Compton thick sources, which are a high fraction (>30%)among type 2 Seyferts in our sample. The main result of this study isthat we confirm strong linear correlations between 2-10 keV,[OIII]λ5007, Hα luminosities which show the same slope asquasars and luminous Seyfert galaxies, independent of the level ofnuclear activity displayed. Moreover, despite the wide range ofEddington ratios (L/L_Edd) tested here (six orders of magnitude, from0.1 down to ~10-7), no correlation is found between the X-rayor optical emission line luminosities and the black hole mass. Ourresults suggest that Seyfert nuclei in our sample are consistent withbeing a scaled-down version of more luminous AGN.

The Link between Star Formation and Accretion in LINERs: A Comparison with Other Active Galactic Nucleus Subclasses
We present archival high-resolution X-ray imaging observations of 25nearby LINERs observed by ACIS on board Chandra. This sample builds onour previously published proprietary and archival X-ray observations andincludes the complete set of LINERs with published black hole masses andFIR luminosities that have been observed by Chandra. Of the 82 LINERsobserved by Chandra, 41 (50%) display hard nuclear cores consistent withan AGN. The nuclear 2-10 keV luminosities of these AGN-LINERs range from~2×1038 to ~1×1044 ergss-1. Reinforcing our previous work, we find a significantcorrelation between the Eddington ratio,Lbol/LEdd, and the FIR luminosity,LFIR, as well as the IR brightness ratio,LFIR/LB, in the host galaxy of AGN-LINERs thatextends over 7 orders of magnitude in Lbol/LEdd.Combining our AGN-LINER sample with galaxies from other AGN subclasses,we find that this correlation is reinforced in a sample of 129 AGNs,extending over almost 9 orders of magnitude inLbol/LEdd. Using archival and previously publishedobservations of the 6.2 μm PAH feature from ISO, we find that it isunlikely that dust heating by the AGN dominates the FIR luminosity inour sample of AGNs. Our results may therefore imply a fundamental linkbetween the mass accretion rate (M˙), as measured by the Eddingtonratio, and the star formation rate (SFR), as measured by the FIRluminosity. Apart from the overall correlation, we find that thedifferent AGN subclasses occupy distinct regions in the LFIRand Lbol/LEdd plane. Assuming a constant radiativeefficiency for accretion, our results may imply a variation in theSFR/M˙ ratio as a function of AGN activity level, a result that mayhave significant consequences for our understanding of galaxy formationand black hole growth.

On the Relevance of the Tremaine-Weinberg Method Applied to an Hα Velocity Field: Pattern Speed Determination in M100 (NGC 4321)
The relevance of the Tremaine-Weinberg (TW) method is tested formeasuring bar, spiral, and inner structure pattern speeds using agaseous velocity field. The TW method is applied to various simulatedbarred galaxies in order to demonstrate its validity in seven differentconfigurations, including star formation and/or dark matter halo. Thereliability of the different physical processes involved and of thevarious observational parameters is also tested. The simulations showthat the TW method could be applied to gaseous velocity fields to get agood estimate of the bar pattern speed, under the condition that regionsof shocks are avoided and measurements are confined to regions where thegaseous bar is well formed. We successfully apply the TW method to theHα velocity field of the Virgo Cluster galaxy M100 (NGC 4321) andderive pattern speeds of 55+/-5 km s-1 kpc-1 forthe nuclear structure, 30+/-2 km s-1 kpc-1 for thebar, and 20+/-1 km s-1 kpc-1 for the spiralpattern, in full agreement with published determinations using the samemethod or alternative ones.

Galaxy Interaction and the Starburst-Seyfert Connection
Galaxy interactions are studied in terms of the starburst-Seyfertconnection. The starburst requires a high rate of gas supply. Since theefficiency for supplying the gas is high in a galaxy interaction,although the companion is not necessarily discernible, Seyfert galaxieswith circumnuclear starbursts are expected to be interacting. Since thelarge amounts of circumnuclear gas and dust obscure the broad-lineregion, they are expected to be observed as Seyfert 2 galaxies. Theactive galactic nucleus itself does not require a high rate of gassupply. Seyfert galaxies without circumnuclear starbursts are notnecessarily expected to be interacting even at the highest luminosities.They are not necessarily expected to evolve from Seyfert galaxies withcircumnuclear starbursts. We derive these and other theoreticalexpectations and confirm them with statistics on observational data ofmagnitude-limited samples of Seyfert galaxies.

Investigating the central engine of Seyfert 2 galaxies with and without Polarized Broad Lines
We study the hard X-ray emission of two samples of Seyfert 2 galaxieswith and without Polarized Broad Lines (PBL). In the hard X-ray domain,absorption effects do not significantly modify the intrinsic emissionallowing us a direct access to the central engine. The purpose of thisstudy is to compare the primary emission of the two Seyfert 2 subclassesin order to investigate the nature of their central engine and to testunified models according to which they both have a hidden Seyfert 1nucleus. We compute the average hard X-ray spectra of Seyfert 2 galaxieswith and without PBL observed with BeppoSAX/PDS (15-136 keV). The twospectra have a common general behavior at first sight, but investigatingdeeper we find differences in the intrinsic properties of the twocategories of Seyfert 2 galaxies. Sy 2 with polarized broad lines havephysical conditions close to those of Sy 1 galaxies whereas Sy 2 withoutPBL differ substantially, suggesting that they may have a particularplace in the scheme of Seyfert galaxies.Appendix A is only available in electronic form athttp://www.edpsciences.org

A Possible Signature of Connection between Blazars and Seyfert Galaxies
The accretion rates (dot{M}) and their correlation with cosmologicalredshifts for a sample of blazars and Seyfert galaxies are presented.The sample includes 77 blazars (28 FSRQs, 26 LBLs, and 23 HBLs) and 60Seyfert galaxies, of which the extended spectral energy distributioninformation and redshifts are available. Within the framework ofaccreting black holes, the accretion rates for these sources wereestimated based on their bolometric luminosities. The result shows thatthe accretion rates are significantly different for each subclass of theblazars and Seyfert galaxies. Their averages are, respectively, 50.2,17.0, 1.0, 0.1Modot yr-1 for the FSRQs, LBLs, HBLs, and theSeyfert galaxies, exhibiting a well descending sequence ofFSRQs-LBLs-HBLs-Seyfert galaxies. They are strongly correlated with theredshifts for both blazars and Seyfert galaxies. The linear correlationcoefficients are 0.81 and 0.68 with a chance probab ility of p <0.0001, respectively. A plot of dot{M} - z shows that the blazars andthe Seyfert galaxies distribute in a distinguishable regions with aconnection at z ˜ 0.7 and almost all the sources lie in a narrowregion of z1.40 ≤ dot{M} ≤ 250 z1.40,illustrating a strong correlation between the two quantities for thewhole sample. The regression line is dot{M} = (14.5 ± 1.2)z1.40±0.06 Modot yr-1 with a linearcoefficient of 0.93 and a chance probability of p < 0.0001,suggesting a connection between blazars and Seyfert galaxies. Thisconnection might imply that the two classes are on the same evolutionarysequence. Although the correlations of the data are formally solid, theconclusion may be affected by one source of considerable uncertainty atthe data level, which is also discussed.

Model-independent measurements of bar pattern speeds
The pattern speed is one of the fundamental parameters that determinesthe structure of barred galaxies. This quantity is usually derived fromindirect methods or by employing model assumptions. The number of barpattern speeds derived using the model-independent Tremaine &Weinberg technique is still very limited. We present the results ofmodel-independent measurements of the bar pattern speed in four galaxiesranging in Hubble type from SB0 to SBbc. Three of the four galaxies inour sample are consistent with bars being fast rotators. The lack ofslow bars is consistent with previous observations and suggests thatbarred galaxies do not have centrally concentrated dark matter haloes.This contradicts simulations of cosmological structure formation andobservations of the central mass concentration in nonbarred galaxies.

Extended gas in Seyfert 2 galaxies: implications for the nuclear source
We use long-slit spectroscopic optical data to derive the properties ofthe extended emitting gas and the nuclear luminosity of a sample of 18Seyfert 2 galaxies. From the emission-line luminosities and ratios wederive the density, reddening and mass of the ionized gas as a functionof distance up to 2-4 kpc from the nucleus. Taking into account thegeometric dilution of the nuclear radiation, we derive the radialdistribution of covering factors and the minimum rate of ionizingphotons emitted by the nuclear source. This number is an order ofmagnitude larger than that obtained from the rate of ionizing photons`intercepted' by the gas and measured from the Hα luminosity. Acalibration is proposed to recover this number from the observedluminosity. The HeIIλ4686/Hβ line ratio was used tocalculate the slope of the ionizing spectral energy distribution (SED),which in combination with the number of ionizing photons allows thecalculation of the hard X-ray luminosities. These luminosities areconsistent with those derived from X-ray spectra in the eight cases forwhich such data are available and recover the intrinsic X-ray emissionin Compton-thick cases. Our method can thus provide reliable estimatesof the X-ray fluxes in Seyfert 2 galaxies for the cases where it is notreadily available. We also use the ionizing SED and luminosity topredict the infrared luminosity under the assumption that it isdominated by reprocessed radiation from a dusty torus, and find a goodagreement with the observed IRAS luminosities.

A Search for ``Dwarf'' Seyfert Nuclei. VI. Properties of Emission-Line Nuclei in Nearby Galaxies
We use the database from Paper III to quantify the global and nuclearproperties of emission-line nuclei in the Palomar spectroscopic surveyof nearby galaxies. We show that the host galaxies of Seyferts, LINERs,and transition objects share remarkably similar large-scale propertiesand local environments. The distinguishing traits emerge on nuclearscales. Compared with LINERs, Seyfert nuclei are an order of magnitudemore luminous and exhibit higher electron densities and internalextinction. We suggest that Seyfert galaxies possess characteristicallymore gas-rich circumnuclear regions and hence a more abundant fuelreservoir and plausibly higher accretion rates. The differences betweenthe ionization states of the narrow emission-line regions of Seyfertsand LINERs can be partly explained by the differences in their nebularproperties. Transition-type objects are consistent with being composite(LINER/H II) systems. With very few exceptions, the stellar populationwithin the central few hundred parsecs of the host galaxies is uniformlyold, a finding that presents a serious challenge to starburst orpost-starburst models for these objects. Seyferts and LINERs havevirtually indistinguishable velocity fields as inferred from their linewidths and line asymmetries. Transition nuclei tend to have narrowerlines and more ambiguous evidence for line asymmetries. All threeclasses of objects obey a strong correlation between line width and lineluminosity. We argue that the angular momentum content of circumnucleargas may be an important factor in determining whether a nucleus becomesactive. Finally, we discuss some possible complications for theunification model of Seyfert galaxies posed by our observations.

The Seyfert Population in the Local Universe
The magnitude-limited catalog of the Southern Sky Redshift Survey(SSRS2) is used to characterize the properties of galaxies hostingactive galactic nuclei (AGNs). Using emission-line ratios, we identify atotal of 162 (3%) Seyfert galaxies out of the parent sample with 5399galaxies. The sample contains 121 Seyfert 2 galaxies and 41 Seyfert 1galaxies. The SSRS2 Seyfert galaxies are predominantly in spirals oftypes Sb and earlier or in galaxies with perturbed appearance as theresult of strong interactions or mergers. Seyfert galaxies in thissample are twice as common in barred hosts as the non-Seyfert galaxies.By assigning galaxies to groups using a percolation algorithm, we findthat the Seyfert galaxies in the SSRS2 are more likely to be found inbinary systems when compared with galaxies in the SSRS2 parent sample.However, there is no statistically significant difference between theSeyfert and SSRS2 parent sample when systems with more than two galaxiesare considered. The analysis of the present sample suggests that thereis a stronger correlation between the presence of the AGN phenomenonwith internal properties of galaxies (morphology, presence of bar,luminosity) than with environmental effects (local galaxy density, groupvelocity dispersion, nearest neighbor distance).Partly based on observations at European Southern Observatory (ESO),under the ESO-ON agreement to operate the 1.52 m telescope.

High-energy sources before INTEGRAL. INTEGRAL reference catalog
We describe the INTEGRAL reference catalog which classifies previouslyknown bright X-ray and gamma-ray sources before the launch of INTEGRAL.These sources are, or have been at least once, brighter than ~ 1 mCrababove 3 keV, and are expected to be detected by INTEGRAL. This catalogis being used in the INTEGRAL Quick Look Analysis to discover newsources or significantly variable sources. We compiled several publishedX-ray and gamma-ray catalogs, and surveyed recent publications for newsources. Consequently, there are 1122 sources in our INTEGRAL referencecatalog. In addition to the source positions, we show an approximatespectral model and expected flux for each source, based on which wederive expected INTEGRAL counting rates. Assuming the default instrumentperformances and at least ~ 105 s exposure time for anypart of the sky, we expect that INTEGRAL will detect at least ~ 700sources below 10 keV and ~ 400 sources above 20 keV over the missionlife.The Catalog is available in electronic form at the CDS via anonymous ftpto cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/411/L59

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr ( or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

The intrinsic emission of Seyfert galaxies observed with BeppoSAX/PDS. I. Comparison of the average spectra of the three classes of Seyfert galaxies
We present a study of the hard X-ray spectrum (>15 keV) of differentclasses of Seyfert galaxies observed with BeppoSAX/PDS. Using hard X-raydata, we avoid absorption effects modifying the Seyfert emission andhave direct access to the central engine of these sources. The aim ofthis study is first to characterize the general properties of the hardX-ray spectrum of Seyfert 1, 1.5 and 2 galaxies and secondly to comparetheir intrinsic emission to test unified models according to which allthe classes have the same nucleus.\ We compute the average spectrum of14 Sy 1, 9 Sy 1.5 and 22 Sy 2 galaxies observed by the PDS (15-136 keV).The average spectrum of Sy 1 differs from that of Sy 2, the firstrequiring the presence of a high energy cutoff which is absent in thesecond. We also show that the reflection component is possibly moreimportant in the Sy 2 emission. The nature of Sy 1.5 galaxies isambiguous as they have a negligible reflection component (like Sy 1) anddo not require a cutoff (like Sy 2).

``Hidden'' Seyfert 2 Galaxies and the X-Ray Background
Obscured active galactic nuclei, which are classified optically as type2 (narrow line) Seyfert galaxies in the local universe, are by far themost promising candidates for the origin of the hard (2-10 keV) X-raybackground radiation. However, optical follow-up observations of faintX-ray sources in deep Chandra images have revealed surprising numbers ofapparently normal galaxies at modest redshift. Such objects represent~40%-60% of the sources classified in deep Chandra surveys, raising thepossibility that the X-ray galaxy population has evolved with cosmictime. Alternatively, most of the faint X-ray galaxies in question are sodistant that their angular diameters are comparable to the slit widthsused in ground-based spectroscopic observations; thus, their nuclearspectral features may be overwhelmed (``hidden'') by host galaxy light.To test this hypothesis, we have obtained integrated spectra of a sampleof nearby, well-studied Seyfert 2 galaxies. The data, which accuratelysimulate observations of distant Chandra sources, demonstrateconvincingly that the defining spectral signatures of Seyfert 2s can behidden by light from their host galaxies. In fact, 60% of the observedobjects would not be classified as Seyfert 2s on the basis of theirintegrated spectra, similar to the fraction of faint X-ray sourcesidentified with ``normal'' galaxies. Thus, the numbers of narrow-lineactive galaxies in deep Chandra surveys (and perhaps all ground-basedspectroscopic surveys of distant galaxies) are likely to have beenunderestimated.

Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities
Black hole mass, along with mass accretion rate, is a fundamentalproperty of active galactic nuclei (AGNs). Black hole mass sets anapproximate upper limit to AGN energetics via the Eddington limit. Wecollect and compare all AGN black hole mass estimates from theliterature; these 177 masses are mostly based on the virial assumptionfor the broad emission lines, with the broad-line region size determinedfrom either reverberation mapping or optical luminosity. We introduce200 additional black hole mass estimates based on properties of the hostgalaxy bulges, using either the observed stellar velocity dispersion orthe fundamental plane relation to infer σ these methods assumethat AGN hosts are normal galaxies. We compare 36 cases for which blackhole mass has been generated by different methods and find, forindividual objects, a scatter as high as a couple of orders ofmagnitude. The less direct the method, the larger the discrepancy withother estimates, probably due to the large scatter in the underlyingcorrelations assumed. Using published fluxes, we calculate bolometricluminosities for 234 AGNs and investigate the relation between blackhole mass and luminosity. In contrast to other studies, we find nosignificant correlation of black hole mass with luminosity, other thanthose induced by circular reasoning in the estimation of black holemass. The Eddington limit defines an approximate upper envelope to thedistribution of luminosities, but the lower envelope depends entirely onthe sample of AGNs included. For any given black hole mass, there is arange in Eddington ratio of up to 3 orders of magnitude.

Seyfert 2 Galaxies with Spectropolarimetric Observations
We present a compilation of radio, infrared, optical, and hard X-ray(2-10 keV) data for a sample of 90 Seyfert 2 galaxies (Sy2s) withspectropolarimetric observations (41 Sy2s with detection of polarizedbroad lines [PBLs] and 49 without PBLs). Compared to Sy2s without PBLs,Sy2s with PBLs tend to be earlier type spirals and show warmermidinfrared color and significant excess of emissions (including thehard X-ray [2-10 keV], [O III] λ5007, infrared [25 μm], andradio). Our analyses indicate that the majority of Sy2s without PBLs arethose sources having less powerful active galactic nucleus (AGN)activities, most likely caused by a low accretion rate. It implies thatthe detectability of the polarized broad emission lines in Sy2s maydepend on their central AGN activities in most cases. Based on theavailable data, we find no compelling evidence for the presence of twotypes of Sy2s; one of which has been proposed to be intrinsicallydifferent from Sy2s claimed in the unification model.

Far-Infrared Census of Starburst-Seyfert Connection
Far-infrared flux densities are newly extracted from the IRAS databasefor the Revised Shapley-Ames and CfA complete samples of Seyfertgalaxies. These data are used to classify the Seyfert galaxies intothose where the far-infrared continuum emission is dominated by theactive galactic nucleus (AGN), circumnuclear starburst, or host galaxy.While AGN-dominant objects consist of comparable numbers of Seyfert 1and 2 galaxies, starburst- and host-dominant objects consistpreferentially of Seyfert 2 galaxies. Thus, in addition to the dustytorus, the circumnuclear starburst region and host galaxy are importantin hiding the broad-line region. Morphologically, starburst-dominantSeyfert galaxies are of later types and more strongly interacting thanAGN-dominant Seyfert galaxies. In a later type galaxy, the AGN centralengine has a lower Eddington luminosity, and the gaseous content ishigher. The gas is efficiently supplied to the starburst via agalaxy-galaxy interaction. Morphologies of host-dominant Seyfertgalaxies are of various types. Since starbursts in Seyfert galaxies areolder than those in classical starburst galaxies, we propose anevolution from starburst to starburst-dominant Seyfert to host-dominantSeyfert for a late-type galaxy. An evolution from AGN-dominant Seyfertto host-dominant Seyfert is proposed for an early-type galaxy. Thesesequences have durations of a few times 108 yr and occurrepeatedly within a galaxy during its evolution from a late type to anearly type.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

A morphological comparison between the central region in AGN and normal galaxies using HST data
We study the morphology of the central region of a sample of ActiveGalactic Nuclei (AGN) and a ``control'' sample of normal galaxies usingarchival observations of the WFPC2 instrument onboard the Hubble SpaceTelescope (HST). We use the ellipse fitting technique in order to get agood description of the inner ``smooth'' light distribution of thegalaxy. We then divide the observed galaxy image by the artificial imagefrom the fitted ellipses in order to detect morphological signatures inthe central region around the nucleus of the galaxy. We performquantitative comparisons of different subgroups of our sample ofgalaxies (according to the Hubble type and the nuclear activity of thegalaxies) by calculating the average amplitude of the structures thatare revealed with the ellipse fitting technique. Our main conclusionsare as follows: 1) All AGNs show significant structure in their inner100 pc and 1 kpc regions whose amplitude is similar in all of them,independent of the Hubble type of the host galaxy. 2) When consideringearly-type galaxies, non-AGN galaxies show no structure at all, contraryto what we find for AGN. 3) When considering late-type galaxies, bothAGN and non-AGN galaxies show significant structure in their centralregion. Our results are consistent with the hypothesis that allearly-type galaxies host a supermassive black hole, but only those thathave enough material in the central regions to fuel it show an activenucleus. The situation is more complicated in late-type galaxies. Eithernot all of them host a central black hole, or, in some of them, thematerial inside the innermost 100 pc region is not transported to thescales of the central engine for some reason, or the large amount of gasand dust hides the active nucleus from our sight. Based on observationsmade with the NASA/ESA Hubble Space Telescope, obtained from the dataarchive at the Space Telescope Science Institute. STScI is operated bythe Association of Universities for Research in Astronomy, Inc., underthe NASA contract NAS5-26555.

Penetrating the Dust: The Duality of Spiral Structure
Not Available

Radio Continuum Survey of an Optically Selected Sample of Nearby Seyfert Galaxies
We have used the Very Large Array (VLA) to conduct a survey for radiocontinuum emission in the sample of 52 Seyfert nuclei selected from theoptical spectroscopic galaxy catalog of Ho, Filippenko, & Sargent.This Seyfert sample is the most complete and least biased available,and, as such, it will be useful for a variety of statistical analyses.Here we present the observations, measurements, and an atlas of radiomaps. The observations were made at 6 cm in the B array and at 20 cm inthe A array, yielding matched angular resolutions of ~1". We detected 44objects (85%) at 6 cm and 37 objects (71%) at 20 cm above a 3 σthreshold of 0.12 mJy beam-1. The sources have a wide rangeof radio powers (P~1018-1025 W Hz-1),spectral indices (α206~+0.5 to -1), andlinear sizes (L~few tens pc-15 kpc). The morphology of the radioemission is predominantly that of a compact core, either unresolved orslightly resolved, occasionally accompanied by elongated, jetlikefeatures. Linearly polarized emission was detected at 6 cm in 12sources, nine of which were also detected at 20 cm.

Circumnuclear Stellar Population, Morphology, and Environment of Seyfert 2 Galaxies: An Evolutionary Scenario
We investigate the relation between the characteristics of thecircumnuclear stellar population and both the galaxy morphology and thepresence of close companions for a sample of 35 Seyfert 2 nuclei.Fifteen galaxies present unambiguous signatures of recent episodes ofstar formation within ~300 pc of the nucleus. When we relate thisproperty to the Hubble type of the host galaxy, we find that theincidence of recent circumnuclear star formation increases along theHubble sequence; it seems to be greater than that in non-Seyfertgalaxies for the early Hubble types S0 and Sa but similar to that innon-Seyfert galaxies for later Hubble types. In both early-type andlate-type Seyfert galaxies, the presence of recent circumnuclear starformation is related to the galaxy morphology in the inner fewkiloparsecs, as observed in Hubble Space Telescope images through thefilter F606W by Malkan et al., who have assigned a late ``inner Hubbletype'' to most Seyfert 2 galaxies with recent circumnuclear starformation. This new classification is due to the presence of dust lanesand spiral structures in the inner region. The presence of recent starformation around Seyfert 2 nuclei is also related to interactions: amongthe 13 galaxies of the sample with close companions or in mergers, ninehave recent star formation in the nuclear region. These correlationsbetween the presence of companions, the inner morphology, and theincidence of recent star formation suggest an evolutionary scenario inwhich the interaction is responsible for sending gas inward, which bothfeeds the active galactic nucleus and triggers star formation. Thestarburst then fades with time and the composite Seyfert 2+starburstnucleus evolves to a ``pure'' Seyfert 2 nucleus with an old stellarpopulation. This scenario can reconcile the hypothesis that the activenucleus in Seyfert galaxies is triggered by interactions with theresults of previous studies, which find only a small excess ofinteracting galaxies in Seyfert samples when compared with non-Seyfertsamples. The large excess can only be found early after the interaction,in the phase in which a composite (Seyfert+starburst) nucleus isobserved.

Statistical Properties of Radio Emission from the Palomar Seyfert Galaxies
We have carried out an analysis of the radio and optical properties of astatistical sample of 45 Seyfert galaxies from the Palomar spectroscopicsurvey of nearby galaxies. We find that the space density of brightgalaxies (-22 mag<=MBT<=-18 mag) showingSeyfert activity is (1.25+/-0.38)×10-3Mpc-3, considerably higher than found in other Seyfertsamples. Host galaxy types, radio spectra, and radio source sizes areuncorrelated with Seyfert type, as predicted by the unified schemes foractive galaxies. Approximately half of the detected galaxies have flator inverted radio spectra, more than expected based on previous samples.Surprisingly, Seyfert 1 galaxies are found to have somewhat strongerradio sources than Seyfert 2 galaxies at 6 and 20 cm, particularly amongthe galaxies with the weakest nuclear activity. We suggest that thisdifference can be accommodated in the unified schemes if a minimum levelof Seyfert activity is required for a radio source to emerge from thevicinity of the active nucleus. Below this level, Seyfert radio sourcesmight be suppressed by free-free absorption associated with the nucleartorus or a compact narrow-line region, thus accounting for both theweakness of the radio emission and the preponderance of flat spectra.Alternatively, the flat spectra and weak radio sources might indicatethat the weak active nuclei are fed by advection-dominated accretiondisks.

Empirical Diagnostics of the Starburst-AGN Connection
We examine a representative sample of 35 Seyfert 2 nuclei. Previous workhas shown that nearly half (15) of these nuclei show the direct (butdifficult to detect) spectroscopic signature at optical/near-UVwavelengths of the hot massive stars that power circumnuclearstarbursts. In the present paper we examine a variety of more easilymeasured quantities for this sample, such as the equivalent widths ofstrong absorption features, continuum colors, emission line equivalentwidths, emission line ratios and profiles, far-IR luminosities, andnear-UV surface brightness. We compare the composite starburst+Seyfert 2nuclei to ``pure'' Seyfert 2 nuclei, Starburst galaxies, and normalgalactic nuclei. Our goals are to verify whether the easily measuredproperties of the composite nuclei are consistent with the expectedimpact of a starburst and to investigate alternative less demandingmethods to infer the presence of starbursts in Seyfert 2 nuclei,applicable to larger or more distant samples. We show that starbursts doindeed leave clear and easily quantifiable imprints on the near-UV tooptical continuum and emission line properties of Seyfert 2's. Compositestarburst+Seyfert 2 systems can be recognized by: (1) a strong``featureless continuum'' (FC), which dilutes the Ca II K line from oldstars in the host's bulge to an equivalent width WK<10Å (2) emission lines whose equivalent widths are intermediatebetween starburst galaxies and ``pure'' Seyfert 2's (3) relatively lowexcitation line ratios, which indicate that part of the gas ionizationin these Seyfert 2's (typically ~50% of Hβ) is due tophotoionization by OB stars; (4) large far-IR luminosities(>~1010 Lsolar) (5) high near-UV surfacebrightness (~103 Lsolar pc-2). Thesecharacteristics are all consistent with the expected impact ofcircumnuclear starbursts on the observed properties of Seyfert 2's.Furthermore, they offer alternative empirical diagnostics of thepresence of circumnuclear starbursts from a few easily measuredquantities.

A Composite Seyfert 2 X-Ray Spectrum: Implications for the Origin of the Cosmic X-Ray Background
We present a composite 1-10 keV Seyfert 2 X-ray spectrum derived fromASCA observations of a distance-limited sample of nearby galaxies. All29 observed objects were detected. Above ~3 keV, the composite spectrumis inverted, confirming that Seyfert 2 galaxies as a class have thespectral properties necessary to explain the flat shape of the cosmicX-ray background spectrum. Integrating the composite spectrum overredshift, we find that the total emission from Seyfert 2 galaxies,combined with the expected contribution from unabsorbed type 1 objects,provides an excellent match to the spectrum and intensity of the hardX-ray background. The principal uncertainty in this procedure is thecosmic evolution of the Seyfert 2 X-ray luminosity function. Separatecomposite spectra for objects in our sample with and without polarizedbroad optical emission lines are also presented.

On black hole masses, radio-loudness and bulge luminosities of Seyfert galaxies
We estimated black hole masses for 9 Seyfert 1 and 13 Seyfert 2 galaxiesin the Palomar and CfA bright Seyfert samples using the tightcorrelation between black hole mass and bulge velocity dispersion.Combining other 13 Seyfert 1s and 2 Seyfert 2s in these samples but withblack hole masses measured recently by reverberation mapping andstellar/gas dynamics, we studied the correlations of black hole masseswith radio-loudness and bulge luminosities for a sample of 37 Seyfertgalaxies. We found that if radio-loudness is measured using the opticaland radio luminosities of the nuclear components, the black hole massesof radio-loud Seyfert 1s tend to increase with the radio-loudness. Theblack hole masses of all Seyfert galaxies increase with the radio power,but Seyfert galaxies have larger radio powers than nearby galaxies withthe same black hole masses. In addition, the correlation between blackhole masses and bulge V-band luminosities for Seyfert galaxies isconsistent with that found for quasars and normal galaxies. The combinedsample of 37 Seyfert galaxies, 15 quasars and 30 normal galaxiessuggests a possible universal nonlinear relation between black hole andbulge masses, MBH ~ Mbulge{1.74 +/-0.14, which is slightly steeper than that found recently by Laor(\cite{Laor01}) for a smaller sample. This nonlinear relation issupported by a larger sample including 65 Seyfert galaxies. Thedifferent MBH/Mbulge ratio for galaxies withdifferent bulge luminosities or different black hole masses may beexplained by this relation. These results are consistent with sometheoretical implications and are important for understanding the natureof radio emissions and the formation and evolution of supermassive blackholes and galaxies.

The Frequency of Nuclear Star Formation in Seyfert 2 Galaxies
We investigate the detectability of starburst signatures in the nuclearspectrum of Seyfert 2 galaxies by constructing spectral models in thewavelength range λλ3500-4100, combining the spectrum of abulge population (of age ~10 Gyr) with that of younger stellarpopulations, spanning ages from ~3 Myr to 1 Gyr. The major constraintsin the analysis are (1) the continuum ratio λλ3660/4020,which efficiently discriminates between models combining a bulgespectrum with a stellar population younger than ~50 Myr and those witholder stellar populations; (2) the presence of the Balmer lines H8, H9,and H10 in absorption, which are unambiguous signatures of stellarpopulations with ages in the range 10 Myr-1 Gyr for the relevantmetallicities. Their detectability depends both on the age of the youngcomponent and on its contribution to the total flux relative to that ofthe bulge. We also construct models combining the bulge template with apower-law (PL) continuum, which is observed in some Seyfert 2 galaxiesin polarized light, contributing with typically 10%-40% of the flux at4020 Å. We conclude that such continuum cannot be distinguishedfrom that of a very young stellar population (age<=10 Myr),contributing with less than ~0.02% of the mass of the bulge. The modelsare compared with nuclear spectra-corresponding to a radius of 200-300pc at the galaxy-of 20 Seyfert 2 galaxies, in which we specifically lookfor the signatures above of young- to intermediate-aged stellarpopulations. We find them in 10 galaxies, thus 50% of the sample. Butonly in six cases (30% of the sample) can they be attributed to youngstars (age<500 Myr): Mrk 1210, ESO 362-G8, NGC 5135, NGC 5643, NGC7130, and NGC 7582. In the remaining four cases, the signatures arecaused by intermediate-aged stars (~1 Gyr). We find a tendency for theyoung stars to be found more frequently among the late-type Seyfertgalaxies, a well-known effect in the nuclei of normal galaxies. Thistendency is supported by a comparison between the equivalent widths (W)of absorption lines of the nuclear spectra of the Seyfert 2 galaxieswith those of normal galaxies of the same Hubble type. For the late-typegalaxies, the W values of the Seyfert galaxies are within the observedrange of the normal galaxies, suggesting a similar stellar population.On the other hand, the W values are lower than those of the normalgalaxies for seven out of the 11 Seyferts in early-type galaxies.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:03h33m39.70s
Aparent dimensions:2.239′ × 1.413′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 1358

→ Request more catalogs and designations from VizieR