Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 1345


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Radio Continuum and Far-infrared Emission from the Galaxies in the Eridanus Group
The Eridanus galaxies follow the well-known radio-FIR correlation. Themajority (70%) of these galaxies have their star formation rates belowthat of the Milky Way. The galaxies that have a significant excess ofradio emission are identified as low luminosity AGNs based on theirradio morphologies obtained from the GMRT observations. There are nopowerful AGNs (L20 cm>1023WHz-1) in the group. The twomost far-infrared and radio luminous galaxies in the group have opticaland HI morphologies suggestive of recent tidal interactions. TheEridanus group also has two far-infrared luminous but radio-deficientgalaxies. It is believed that these galaxies are observed within a fewMyr of the onset of an intense star formation episode after beingquiescent for at least a 100 Myr. The upper end of the radio luminositydistribution of the Eridanus galaxies (L20 cm1022WHz-1) isconsistent with that of the field galaxies, other groups, and late-typegalaxies in nearby clusters.

The HI Content of the Eridanus Group of Galaxies
The HI content of galaxies in the Eridanus group is studied using theGMRT observations and the HIPASS data. A significant HI deficiency up toa factor of 2-3 is observed in galaxies in the high galaxy densityregions. The HI deficiency in galaxies is observed to be directlycorrelated to the local projected galaxy density, and inverselycorrelated to the lineof-sight radial velocity. Furthermore, galaxieswith larger optical diameters are predominantly in the lower galaxydensity regions. It is suggested that the HI deficiency in Eridanus isdue to tidal interactions. In some galaxies, evidences of tidalinteractions are seen. An important implication is that significantevolution of galaxies can take place in the group environment. In thehierarchical way of formation of clusters via mergers of groups, afraction of the observed HI deficiency in clusters could have originatedin groups. The co-existence of S0s and severely HI deficient galaxies inthe Eridanus group suggests that tidal interaction is likely to be aneffective mechanism for transforming spirals to S0s.

GMRT HI Observations of the Eridanus Group of Galaxies I.
The GMRT HI 21cm-line observations of galaxies in the Eridanus group arepresented. The Eridanus group, at a distance of ~23 Mpc, is a loosegroup of ~200 galaxies. The group extends to more than 10 Mpc inprojection. The velocity dispersion of the galaxies in the group is ~240km s-1. The galaxies are clustered into different sub-groups. Theoverall population mix of the group is 30% (E + S0) and 70% (Sp + Irr).The observations of 57 Eridanus galaxies were carried out with the GMRTfor ~ 200 h. HI emission was detected from 31 galaxies. The channel rmsof ~1 mJy beam-1 was achieved for most of the image-cubes made with 4 hof data. The corresponding HI column density sensitivity (3σ) is~1 × 1020 cm-2 for a velocity-width of ~ 13.4 km s-1.The 3σ detection lss surface densities, HI disk parameters and HIrotation curves are presented. The velocity fields are analysedseparately for the approaching and the receding sides of the galaxies.These data will be used to study the HI and the radio continuumproperties, the Tully-Fisher relations, the dark matter halos, and thekinematical and HI lopsidedness in galaxies.

Optimization of Starburst99 for Intermediate-Age and Old Stellar Populations
We have incorporated the latest release of the Padova models into theevolutionary synthesis code Starburst99. The Padova tracks were extendedto include the full asymptotic giant branch (AGB) evolution until thefinal thermal pulse over the mass range 0.9-5 Msolar. Withthis addition, Starburst99 accounts for all stellar phases thatcontribute to the integrated light of a stellar population witharbitrary age from the extreme-ultraviolet to the near-infrared. AGBstars are important for ages between 0.1 and 2 Gyr, with theircontribution increasing at longer wavelengths. We investigatesimilarities and differences between the model predictions by the Genevaand the Padova tracks. The differences are particularly pronounced atages >1 Gyr, when incompleteness sets in for the Geneva models. Wealso perform detailed comparisons with the predictions of other majorsynthesis codes and find excellent agreement. Our synthesized opticalcolors are compared to observations of old, intermediate-age, and youngpopulations. Excellent agreement is found for the old globular clustersystem of NGC 5128 and for old and intermediate-age clusters in NGC4038/4039. In contrast, the models fail for red supergiant-dominatedpopulations with subsolar abundances. This failure can be traced back toincorrect red supergiant parameters in the stellar evolutionary tracks.Our models and the synthesis code are publicly available as version 5.0of Starburst99 at http://www.stsci.edu/science/starburst99.

Dwarf and Normal Spiral Galaxies: are they Self-Similar?
The investigation presented here was focused on clarifying the existenceof dwarf spiral galaxies as a separate group from classical spirals.First, a list of spiral galaxies with small sizes was obtained.Information on colors, luminosities, morphologies and chemical contentwas searched for in the literature for these galaxies. Using thisinformation, it can be concluded that dwarf spirals are not likely to bethe tail of the distribution of classical galaxies. On the contrary,significant differences in some of the most important properties ofspiral galaxies, such as the metallicity gradient and the bar frecuency,were found. In any case, further and more accurate observations areneeded for a definitive answer.

Circumnuclear Structure and Black Hole Fueling: Hubble Space Telescope NICMOS Imaging of 250 Active and Normal Galaxies
Why are the nuclei of some galaxies more active than others? If mostgalaxies harbor a central massive black hole, the main difference isprobably in how well it is fueled by its surroundings. We investigatethe hypothesis that such a difference can be seen in the detailedcircumnuclear morphologies of galaxies using several quantitativelydefined features, including bars, isophotal twists, boxy and diskyisophotes, and strong nonaxisymmetric features in unsharp-masked images.These diagnostics are applied to 250 high-resolution images of galaxycenters obtained in the near-infrared with NICMOS on the Hubble SpaceTelescope. To guard against the influence of possible biases andselection effects, we have carefully matched samples of Seyfert 1,Seyfert 2, LINER, starburst, and normal galaxies in their basicproperties, taking particular care to ensure that each was observed witha similar average scale (10-15 pc pixel-1). Severalmorphological differences among our five different spectroscopicclassifications emerge from the analysis. The H II/starburst galaxiesshow the strongest deviations from smooth elliptical isophotes, whilethe normal galaxies and LINERs have the least disturbed morphology. TheSeyfert 2s have significantly more twisted isophotes than any othercategory, and the early-type Seyfert 2s are significantly more disturbedthan the early-type Seyfert 1s. The morphological differences betweenSeyfert 1s and Seyfert 2s suggest that more is at work than simply theviewing angle of the central engine. They may correspond to differentevolutionary stages.

Do bulges of early- and late-type spirals have different morphology?
We study HST/NICMOS H-band images of bulges of two equal-sized samplesof early- (TRC3 <= 3) and late-type spiral (mainly Sbc-Sc)galaxies matched in outer disk axis ratio. We find that bulges oflate-type spirals are more elongated than their counterparts inearly-type spirals. Using a KS-test we find that the two distributionsare different at the 98.4% confidence level. We conclude that the twodata sets are different, i.e. late-type galaxies have a broaderellipticity distribution and contain more elongated features in theinner regions. We discuss the possibility that these would correspond tobars at a later evolutionary stage, i.e. secularly evolved bars.Consequent implications are raised, and we discuss relevant questionsregarding the formation and structure of bulges. Are bulges ofearly-type and late-type spirals different? Are their formationscenarios different? Can we talk about bulges in the same way fordifferent types of galaxies?

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

Nested and Single Bars in Seyfert and Non-Seyfert Galaxies
We analyze the observed properties of nested and single stellar barsystems in disk galaxies. The 112 galaxies in our sample comprise thelargest matched Seyfert versus non-Seyfert galaxy sample of nearbygalaxies with complete near-infrared or optical imaging sensitive tolength scales ranging from tens of parsecs to tens of kiloparsecs. Thepresence of bars is deduced by fitting ellipses to isophotes in HubbleSpace Telescope (HST) H-band images up to 10" radius and in ground-basednear-infrared and optical images outside the H-band images. This is aconservative approach that is likely to result in an underestimate ofthe true bar fraction. We find that a significant fraction of the samplegalaxies, 17%+/-4%, have more than one bar, and that 28%+/-5% of barredgalaxies have nested bars. The bar fractions appear to be stableaccording to reasonable changes in our adopted bar criteria. For thenested bars, we detect a clear division in length between thelarge-scale (primary) bars and small-scale (secondary) bars, in bothabsolute and normalized (to the size of the galaxy) length. We arguethat this bimodal distribution can be understood within the framework ofdisk resonances, specifically the inner Lindblad resonances (ILRs),which are located where the gravitational potential of the innermostgalaxy switches effectively from three-dimensional to two-dimensional.This conclusion is further strengthened by the observed distribution ofthe sizes of nuclear rings which are dynamically associated with theILRs. While primary bar sizes are found to correlate with the hostgalaxy sizes, no such correlation is observed for the secondary bars.Moreover, we find that secondary bars differ morphologically from singlebars. Our matched Seyfert and non-Seyfert samples show a statisticallysignificant excess of bars among the Seyfert galaxies at practically alllength scales. We confirm our previous results that bars are moreabundant in Seyfert hosts than in non-Seyfert galaxies and that Seyfertgalaxies always show a preponderance of ``thick'' bars compared to thebars in non-Seyfert galaxies. Finally, no correlation is observedbetween the presence of a bar and that of companion galaxies, evenrelatively bright ones. Overall, since star formation and dustextinction can be significant even in the H band, the stellar dynamicsof the central kiloparsec cannot always be revealed reliably by the useof near-infrared surface photometry alone.

Spiral Galaxies with HST/NICMOS. II. Isophotal Fits and Nuclear Cusp Slopes
We present surface brightness profiles for 56 of the 78 spiral galaxiesobserved in the HST/NICMOS2 F160W snapshot survey introduced in Paper Iof this series, as well as surface brightness profiles for 23 objectsout of the 41 that were also observed in the F110W filter. We fit thesesurface brightness profiles with the Nuker law of Lauer et al. and usethe smooth analytical descriptions of the data to compute the averagenuclear stellar cusp slopes <γ> in the 0.1"-0.5" radialrange. Our main result is the startling similarity between the nuclearstellar cusp slopes <γ> in the near-infrared compared withthose derived in the visual passband. This similarity has severalimplications: (1) Despite the significant local color variations thatare found in the nuclear regions of spirals and that are documented inPaper I, there are typically little or no optical-NIR global colorgradients, and thus no global stellar population variations, inside~50-100 pc from the nucleus in nearby spirals. (2) The large observedrange of the strength of the nuclear stellar cusps seen in the HSToptical study of spiral galaxies reflects a physical difference betweengalaxies and is not an artifact caused by nuclear dust and/or recentstar formation. (3) The dichotomy between R1/4 bulges, withsteep nuclear stellar cusps <γ>~1, and exponential bulges,with shallow nuclear stellar cusps <γ><0.3, is also notan artifact of the effects of dust or recent star formation. (4) Thepresence of a surrounding massive disk appears to have no effect on therise of the stellar density distribution within the innermost hundredparsecs of the R1/4 spheroids. These results imply abreakdown within the family of exponential bulges of the nuclear versusglobal relationships that have been found for the R1/4spheroids. Such a breakdown is likely to have significant implicationsconcerning the formation of exponential bulges and their connection withthe R1/4 spheroids. Based on observations with the NASA/ESAHubble Space Telescope, obtained at the Space Telescope ScienceInstitute, which is operated by the Association of Universities forResearch in Astronomy, Inc., under NASA contract NAS 5-26555.

Spiral Galaxies with HST/NICMOS. I. Nuclear Morphologies, Color Maps, and Distinct Nuclei
This is the first of two papers where we present the analysis of anHST/NICMOS2 near-infrared (NIR) snapshot survey in the F160W (H) filterfor a sample of 78 spiral galaxies selected from the UGC and ESOLVcatalogs. For 69 of these objects we provide nuclear color informationderived by combining the H data either with additional NICMOS F110W (J)images or with V WFPC2/HST data. Here we present the NIR images and theoptical-NIR color maps. We focus our attention on the properties of thephotometrically distinct ``nuclei'' which are found embedded in most ofthe galaxies and provide measurements of their half-light radii andmagnitudes in the H (and when available in the J) band. We find that (1)in the NIR the nuclei embedded in the bright early- to intermediate-typegalaxies span a much larger range in brightness than the nuclei whichare typically found embedded in bulgeless late-type disks: the nucleiembedded in the early- to intermediate-type galaxies reach, on thebright end, values up to HAB~-17.7 mag; (2) nuclei are foundin both nonbarred and barred hosts, in large-scale (>~1 kpc) as wellas in nuclear (up to a few 100 pc) bars; (3) there is a significantincrease in half-light radius with increasing luminosity of the nucleusin the early/intermediate types (a decade in radius for ~8 magbrightening), a correlation which was found in the V band and which isalso seen in the NIR data; (4) the nuclei of early/intermediate-typespirals cover a large range of optical-NIR colors, from V-H~-0.5 to 3.Some nuclei are bluer and others redder than the surroundinggalaxy,indicating the presence of activity or reddening by dust in many ofthese systems; (5) someearly/intermediate nuclei are elongated and/orslightly offset from the isophotal center of the host galaxy. Onaverage, however, these nuclei appear as centered, star-cluster-likestructures similar to those whichare found in the late-type disks. Basedon observations with the NASA/ESA Hubble Space Telescope, obtained atthe Space Telescope Science Institute, which is operated by Associationof Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

Hubble Space Telescope Optical-Near-Infrared Colors of Nearby R1/4 and Exponential Bulges
We have analyzed V, H, and J Hubble Space Telescope (HST) images for asample of early- to late-type spiral galaxies and have reportedelsewhere the statistical frequency of R1/4-law andexponential bulges in our sample as a function of Hubble type and thefrequency of occurrence and structural properties of the resolvedcentral nuclei hosted by intermediate- to late-type bulges and disks(see references in the text). Here we use these data to show thefollowing:1.The V-H color distribution of the R1/4 bulge peaksaround ~1.3, with a sigma Δ(V-H)~0.1 mag. Assuming asolar metallicity, these values correspond to stellar ages of ~6+/-3Gyr. In contrast, the V-H color distribution of the exponential bulgespeaks at and has a sigma Δ(V-H)~0.4 mag. Thislikely implies significantly smaller ages and/or lower metallicities for(a significant fraction of the stars in) the exponential bulges comparedto the R1/4-law spheroids. 2.Most of the central nuclei hosted by the exponential bulges haveV-H and J-H colors that are compatible with relatively unobscuredstellar populations. Assuming no or little dust effects, ages >~1 Gyrare suggested for these nuclei, which in turn imply masses of about afew 106 to a few 107 Msolar, i.e.,sufficient to dissolve progenitor bars with masses consistent with thoseinferred for the exponential bulges by their luminosities.3. While different bulge-nucleus pairscover a large range of V-H colors, each bulge-nucleus pair has quitesimilar V-H colors and thus possibly similar stellar populations.The HST photometric analysis suggests thatexponential-type bulge formation is taking place in the local universeand that this process is consistent with being the outcome of secularevolution processes within the disks. The structures that are currentlyformed inside the disks are quite dissimilar from the oldelliptical-like spheroids that are hosted by the early-type disks. Basedon observations with the NASA/ESA Hubble Space Telescope, obtained atthe Space Telescope Science Institute, which is operated by Associationof Universities for Research in Astronomy, Inc. (AURA), under NASAcontract NAS 5-26555.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

Box- and peanut-shaped bulges. I. Statistics
We present a classification for bulges of a complete sample of ~ 1350edge-on disk galaxies derived from the RC3 (Third Reference Catalogue ofBright Galaxies, de Vaucouleurs et al. \cite{rc3}). A visualclassification of the bulges using the Digitized Sky Survey (DSS) inthree types of b/p bulges or as an elliptical type is presented andsupported by CCD images. NIR observations reveal that dust extinctiondoes almost not influence the shape of bulges. There is no substantialdifference between the shape of bulges in the optical and in the NIR.Our analysis reveals that 45% of all bulges are box- and peanut-shaped(b/p). The frequency of b/p bulges for all morphological types from S0to Sd is > 40%. In particular, this is for the first time that such alarge frequency of b/p bulges is reported for galaxies as late as Sd.The fraction of the observed b/p bulges is large enough to explain theb/p bulges by bars. Partly based on observations collected at ESO/LaSilla (Chile), DSAZ/Calar Alto (Spain), and Lowell Observatory/Flagstaff(AZ/U.S.A.). Tables 6 and 7 are only available in electronic form at CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The QDOT all-sky IRAS galaxy redshift survey
We describe the construction of the QDOT survey, which is publiclyavailable from an anonymous FTP account. The catalogue consists ofinfrared properties and redshifts of an all-sky sample of 2387 IRASgalaxies brighter than the IRAS PSC 60-μm completeness limit(S_60>0.6Jy), sparsely sampled at a rate of one-in-six. At |b|>10deg, after removing a small number of Galactic sources, the redshiftcompleteness is better than 98per cent (2086/2127). New redshifts for1401 IRAS sources were obtained to complete the catalogue; themeasurement and reduction of these are described, and the new redshiftstabulated here. We also tabulate all sources at |b|>10 deg with noredshift so far, and sources with conflicting alternative redshiftseither from our own work, or from published velocities. A list of 95ultraluminous galaxies (i.e. with L_60μm>10^12 L_solar) is alsoprovided. Of these, ~20per cent are AGN of some kind; the broad-lineobjects typically show strong Feii emission. Since the publication ofthe first QDOT papers, there have been several hundred velocity changes:some velocities are new, some QDOT velocities have been replaced by moreaccurate values, and some errors have been corrected. We also present anew analysis of the accuracy and linearity of IRAS 60-μm fluxes. Wefind that the flux uncertainties are well described by a combination of0.05-Jy fixed size uncertainty and 8per cent fractional uncertainty.This is not enough to cause the large Malmquist-type errors in the rateof evolution postulated by Fisher et al. We do, however, find marginalevidence for non-linearity in the PSC 60-μm flux scale, in the sensethat faint sources may have fluxes overestimated by about 5per centcompared with bright sources. We update some of the previous scientificanalyses to assess the changes. The main new results are as follows. (1)The luminosity function is very well determined overall but is uncertainby a factor of several at the very highest luminosities(L_60μm>5x10^12L_solar), as this is where the remainingunidentified objects are almost certainly concentrated. (2) Thebest-fitting rate of evolution is somewhat lower than our previousestimate; expressed as pure density evolution with density varying as(1+z)^p, we find p=5.6+/-2.3. Making a rough correction for the possible(but very uncertain) non-linearity of fluxes, we find p=4.5+/-2.3. (3)The dipole amplitude decreases a little, and the implied value of thedensity parameter, assuming that IRAS galaxies trace the mass, isΩ=0.9(+0.45, -0.25). (4) Finally, the estimate of density varianceon large scales changes negligibly, still indicating a significantdiscrepancy from the predictions of simple cold dark matter cosmogonies.

The Centers of Early- to Intermediate-Type Spiral Galaxies: A Structural Analysis
A recent Hubble Space Telescope (HST)/WFPC2 visual survey of early- andintermediate-type spiral galaxies has unveiled a great complexity in theinner regions of these systems, which include a high fraction ofphotometrically distinct compact sources sitting at the galactic centers(``nuclei''). The faint nuclei (M_V>~-12) are typically hosted byrather amorphous, quiescent, bulgelike structures with an exponential(rather than the classical R^1/4) light profile. These ``exponentialbulges'' are commonly found inside the intermediate-type disks,consistent with previous studies. Brighter nuclei (M_V<~-12) aretypically found instead in the centers of galaxies with circumnuclearrings/arms of star formation or dust and an active, i.e., H II- orAGN-type, central spectrum at ground-based resolution. On the structuralplane of half-light radius (R_e) versus mean surface brightness withinthe half-light radius (mu_e), faint and bright nuclei overlap with, andfill the region of parameter space between, the old Milky Way globularclusters and the young star clusters, respectively, with typical R_e ofabout a few up to ~20 pc. On the same plane, the exponential bulges havesignificantly fainter mu_e than R^1/4 bulges for any given radius andfollow a mu_e-R_e relation typical of disks, which strengthens thesuggestion that the exponential bulges grow inside the disks as a resultof the secular evolution of the latter. Under the likely assumption thatthe visual light from the faint nuclei embedded in the quiescentexponential bulges is of stellar origin and of a similar (>~1 Gyr)age for the central star clusters and their host bulges, the massesinferred for the former agree with those required to disrupt barscomparable in size to the latter. This offers support to scenarios inwhich the exponential bulges grow inside the disks owing to the orbitaldisruption of progenitor bars caused by the growth of a centralconcentration of mass and suggests that this specific mode of bulgeformation is (still) active in the present-day universe. On the otherhand, the presence of the massive clusters at the very center of thelow-density exponential bulges should prevent any other ``nuclear'' barfrom forming, thereby preventing further infall of dissipative fuel tothe nuclear regions. This may argue against the possibility of evolvingthe exponential bulges into denser, R^1/4 bulges by a simple looping forseveral cycles of the bar formation/disruption mechanism.

Accurate Positions for MCG Galaxies
We have measured accurate celestial coordinates for 4741 extragalacticobjects, primarily drawn from a list of MCG galaxies with no recentlypublished accurate positions. The standard deviations in the newpositions depend slightly on the measurement method but are on the orderof 1.0" to 1.2". Standard deviations in the original MCG positions areconfirmed to be at the 1.5′-2.0′ level. These new positionswere integrated into NED in 1997 December.

A Comparison of the Intrinsic Shapes of Two Different Types of Dwarf Galaxies: Blue Compact Dwarfs and Dwarf Ellipticals
We measure the apparent shapes for a sample of 62 blue compact dwarfgalaxies (BCDs) and compare them with the apparent shapes for a sampleof 80 dwarf elliptical galaxies (dEs). The BCDs are flatter, on average,than the dEs, but the difference is only marginally significant. We thenuse both nonparametric and parametric techniques to determine possibledistributions of intrinsic shapes for the BCDs. The hypothesis that BCDsare oblate spheroids can be ruled out with a high confidence level(>99%), but the hypothesis that they are prolate spheroids cannot beexcluded. The apparent shapes of BCDs are totally consistent with thehypothesis that they are triaxial ellipsoids. If the intrinsic axisratios beta and gamma are distributed according to a Gaussian with meansbeta 0 and gamma 0 and standard deviation sigma , we find that thebest-fitting distribution for BCDs has ( beta 0, gamma 0, sigma ) =(0.66, 0.55, 0.16), while that for dEs has ( beta 0, gamma 0, sigma ) =(0.85, 0.64, 0.24). Our results are consistent with the hypothesis thatBCDs have a close evolutionary relation with dEs.

Spiral Galaxies with WFPC2. II. The Nuclear Properties of 40 Objects
We report the analysis of Hubble Space Telescope Wide Field PlanetaryCamera 2 F606W images of 40 spiral galaxies belonging to the sampleintroduced in Paper I, where 35 other targets were discussed. Wedescribe the optical morphological properties of the new 40 galaxies,derive the surface brightness profiles for 25 of them, and present theresults of photometric decompositions of these profiles into a ``bulge''(R^1/4 or exponential) and a disk component. The analysis of theenlarged sample of 75 galaxies puts on a statistically more solid groundthe main results presented in Paper I: (1) In ~30% of the galaxies, theinner, morphologically distinct structures have an irregular appearance.Some of these ``irregular bulges'' are likely to be currently formingstars. (2) Resolved, central compact sources are detected in about 50%of the galaxies. (3) The central compact sources in galaxies withnuclear star formation are brighter, for similar sizes, than those innon-star-forming galaxies. (4) The luminosity of the compact sourcescorrelates with the total galactic luminosity. Furthermore, the analysisof the enlarged sample of 75 objects shows the following: (a) Several ofthe nonclassical inner structures are well fitted by an exponentialprofile. These ``exponential bulges'' are typically fainter than R^1/4bulges, for a given total galaxy luminosity and (catalog) Hubble typelater than Sab. (b) Irregular/exponential bulges typically host centralcompact sources. (c) The central sources are present in all types ofdisk galaxies, starting with systems as early as S0a. About 60% of Sb toSc galaxies host a central compact source. Many of the galaxies thathost compact sources contain a barred structure. (d) Galaxies withapparent nuclear star formation, which also host the brightest compactsources, are preferentially the early- and intermediate-type (S0a-Sb)systems. (e) None of the features depend on environment: isolated andnonisolated galaxies show indistinguishable properties. Independent ofthe physical nature of the nonclassical inner structures, our mainconclusion is that a significant fraction of galaxies classified fromthe ground as relatively early-type spirals show a rich variety ofcentral properties and little or no morphological/photometric evidencefor a smooth, R^1/4 law bulge. Based on observations with the NASA/ESAHubble Space Telescope, obtained at the Space Telescope ScienceInstitute, which is operated by the Association of Universities forResearch in Astronomy, Inc., under NASA contract NAS 5-26555.

The Southern Sky Redshift Survey
We report redshifts, magnitudes, and morphological classifications for5369 galaxies with m_B <= 15.5 and for 57 galaxies fainter than thislimit, in two regions covering a total of 1.70 sr in the southerncelestial hemisphere. The galaxy catalog is drawn primarily from thelist of nonstellar objects identified in the Hubble Space TelescopeGuide Star Catalog (GSC). The galaxies have positions accurate to ~1"and magnitudes with an rms scatter of ~0.3 mag. We compute magnitudes(m_SSRS2) from the relation between instrumental GSC magnitudes and thephotometry by Lauberts & Valentijn. From a comparison with CCDphotometry, we find that our system is homogeneous across the sky andcorresponds to magnitudes measured at the isophotal level ~26 magarcsec^-2. The precision of the radial velocities is ~40 km s^-1, andthe redshift survey is more than 99% complete to the m_SSRS2 = 15.5 maglimit. This sample is in the direction opposite that of the CfA2; incombination the two surveys provide an important database for studies ofthe properties of galaxies and their large-scale distribution in thenearby universe. Based on observations obtained at Cerro TololoInter-American Observatory, National Optical Astronomy Observatories,operated by the Association of Universities for Research in Astronomy,Inc., under cooperative agreement with the National Science Foundation;Complejo Astronomico El Leoncito, operated under agreement between theConsejo Nacional de Investigaciones Científicas de laRepública Argentina and the National Universities of La Plata,Córdoba, and San Juan; the European Southern Observatory, LaSilla, Chile, partially under the bilateral ESO-ObservatórioNacional agreement; Fred Lawrence Whipple Observatory;Laboratório Nacional de Astrofísica, Brazil; and the SouthAfrican Astronomical Observatory.

Spiral Galaxies with WFPC2. III. Nuclear Cusp Slopes
In this paper, the third of a series dedicated to the investigation ofthe nuclear properties of spiral galaxies, we (1) model the Wide FieldPlanetary Camera 2 F606W nuclear surface brightness profiles of 41spiral galaxies presented in Papers I and II with the analytic lawintroduced by Lauer et al. and (2) deconvolve these surface brightnessprofiles and their analytic fits, so as to estimate the nuclear stellardensities of bulges of spiral galaxies. We find that the nuclear stellarcusps (quantified by the average logarithmic slope of the surfacebrightness profiles within 0.1"-0.5") are significantly different forR^1/4 law and exponential bulges. The former have nuclear propertiessimilar to those of early-type galaxies, i.e., similar values of nuclearcusps for comparable luminosities, and increasingly steeper stellarcusps with decreasing luminosity. By contrast, exponential bulges have(underlying the light contribution from photometrically distinct,central compact sources) comparatively shallower stellar cusps, andlikely lower nuclear densities, than R^1/4 law bulges. Based onobservations with the NASA/ESA Hubble Space Telescope, obtained at theSpace Telescope Science Institute, which is operated by the Associationof Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

Catalogue of HI maps of galaxies. I.
A catalogue is presented of galaxies having large-scale observations inthe HI line. This catalogue collects from the literature the informationthat characterizes the observations in the 21-cm line and the way thatthese data were presented by means of maps, graphics and tables, forshowing the distribution and kinematics of the gas. It containsfurthermore a measure of the HI extension that is detected at the levelof the maximum sensitivity reached in the observations. This catalogueis intended as a guide for references on the HI maps published in theliterature from 1953 to 1995 and is the basis for the analysis of thedata presented in Paper II. The catalogue is only available inelectronic form at the CDS via anonymous ftp 130.79.128.5 orhttp://cdsweb.u-strasbg.fr/Abstract.html

Total magnitude, radius, colour indices, colour gradients and photometric type of galaxies
We present a catalogue of aperture photometry of galaxies, in UBVRI,assembled from three different origins: (i) an update of the catalogueof Buta et al. (1995) (ii) published photometric profiles and (iii)aperture photometry performed on CCD images. We explored different setsof growth curves to fit these data: (i) The Sersic law, (ii) The net ofgrowth curves used for the preparation of the RC3 and (iii) A linearinterpolation between the de Vaucouleurs (r(1/4) ) and exponential laws.Finally we adopted the latter solution. Fitting these growth curves, wederive (1) the total magnitude, (2) the effective radius, (3) the colourindices and (4) gradients and (5) the photometric type of 5169 galaxies.The photometric type is defined to statistically match the revisedmorphologic type and parametrizes the shape of the growth curve. It iscoded from -9, for very concentrated galaxies, to +10, for diffusegalaxies. Based in part on observations collected at the Haute-ProvenceObservatory.

An Einstein X-Ray Survey of Optically Selected Galaxies. I. Data
We present the results of a complete Einstein imaging proportionalcounter X-ray survey of optically selected galaxies from theShapley-Ames Catalog, the Uppsala General Catalogue, and the EuropeanSouthern Observatory Catalog. Well-defined optical criteria are used toselect the galaxies, and X-ray fluxes are measured at the opticallydefined positions. The result is a comprehensive list of X-ray detectionand upper limit measurements for 1018 galaxies. Of these, 827 haveeither independent distance estimates or radial velocities. Associatedoptical, redshift, and distance data have been assembled for thesegalaxies, and their distances come from a combination of directlypredicted distances and those predicted from the Faber-Burstein GreatAttractor/Virgocentric infall model. The accuracy of the X-ray fluxeshas been checked in three different ways; all are consistent with thederived X-ray fluxes being of <=0.1 dex accuracy. In particular,there is agreement with previously published X-ray fluxes for galaxiesin common with a 1991 study by Roberts et al. and a 1992 study byFabbiano et al. The data presented here will be used in further studiesto characterize the X-ray output of galaxies of various morphologicaltypes and thus to enable the determination of the major sourcescontributing to the X-ray emission from galaxies.

Spiral Galaxies with WFPC2.I.Nuclear Morphology, Bulges, Star Clusters, and Surface Brightness Profiles
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....114.2366C&db_key=AST

The APM Bright Galaxy Catalogue
The APM Bright Galaxy Catalogue lists positions, magnitudes, shapes andmorphological types for 14681 galaxies brighter than b_J magnitude16.44, over a 4180 deg^2 area of the southern sky. Galaxy and stellarimages have been located from glass copy plates of the United KingdomSchmidt Telescope (UKST) IIIaJ sky survey using the automatedphotographic measuring (APM) facility in Cambridge, England. Themajority of stellar images are rejected by the regularity of their imagesurface brightness profiles. Remaining images are inspected by eye onfilm copies of the survey material and classed as stellar, multiplestellar, galaxy, merger or noise. Galaxies are further classified aselliptical, lenticular, spiral, irregular or uncertain. The 180 surveyfields are put on to a uniform photometric system by comparing themagnitudes of galaxies in the overlap regions between neighbouringplates. The magnitude zero-point, photometric uniformity andphotographic saturation are checked with CCD photometry. Finally, thecompleteness and reliability of the catalogue are assessed by usingvarious internal tests and by comparison with several independentlyconstructed galaxy catalogues.

An image database. II. Catalogue between δ=-30deg and δ=70deg.
A preliminary list of 68.040 galaxies was built from extraction of35.841 digitized images of the Palomar Sky Survey (Paper I). For eachgalaxy, the basic parameters are obtained: coordinates, diameter, axisratio, total magnitude, position angle. On this preliminary list, weapply severe selection rules to get a catalog of 28.000 galaxies, wellidentified and well documented. For each parameter, a comparison is madewith standard measurements. The accuracy of the raw photometricparameters is quite good despite of the simplicity of the method.Without any local correction, the standard error on the total magnitudeis about 0.5 magnitude up to a total magnitude of B_T_=17. Significantsecondary effects are detected concerning the magnitudes: distance toplate center effect and air-mass effect.

The Montreal blue galaxy survey. I - First list of ultraviolet-bright candidates
The first results of a UV-bright galaxy survey using theMontreal-Cambridge-Tololo (MCT) plate collection are presented. Visualinspection of 57 CTIO Curtis Schmidt plates, cnvering more than 1300 sqdeg, has resulted in the identification of 95 UV-bright galaxiesbrighter than B = 15.5. Even though 80 percent of these objects are IRASsources, barely 20 percent have their nature already established. Theinitial result of our survey shows that the bulk of our UV-brightcandidates are narrow emission-line galaxies commonly known as starburstor H II galaxies. The fraction of AGNs found is somewhat less than 10percent, but comparable to what has been found by the Markarian survey.

An X-ray catalog and atlas of galaxies
An X-ray catalog and atlas of galaxies observed with the EinsteinObservatory imaging instruments (IPC and HRI) are presented. The catalogcomprises 493 galaxies, including targets of pointed observations, andRSA or RC2 galaxies serendipitously included in Einstein fields. A totalof 450 of these galaxies were imaged well within the instrumentalfields, resulting in 238 detections and 2123 sigma upper limits. Theother galaxies were either at the edge of the visible field of view orconfused with other X-ray sources. For these a rough measure of theirX-ray emission is also given. The atlas shows X-ray contour maps ofdetected galaxies superposed on optical photographs and givesazimuthally averaged surface brightness profiles of galaxies detectedwith a high signal-to-noise ratio.

The proportion of ultraluminous IRAS galaxies in interacting systems
A sample consisting of 41 ultraluminous IRAS galaxies with far-infraredluminosities greater than 10 exp 12 solar luminosities is examined, aswell as a control sample of 41 low-luminosity IRAS galaxies withluminosities less than 10 exp 9.7. Their images on the film copies ofthe SERC Sky Survey were scanned with a pixel size of 5 microns over asquare area of typically 6.72 arcsec to the side. The density contourmaps and the sky survey material show that the proportion ofultraluminous IRAS galaxies which are interacting or merger systems, 61+/-12 percent, is much higher than that of low-luminosity ones (10 +/-5percent), but still well short of the 100 percent suggested in severalrecent reports. This result supports the conclusion that galaxyinteraction or merging is more common at high-IR luminosity, but it isprobably not the only cause of their activity.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Éridan
Right ascension:03h29m31.60s
Declination:-17°46'43.0"
Aparent dimensions:1.445′ × 1.122′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 1345
HYPERLEDA-IPGC 12979

→ Request more catalogs and designations from VizieR